Skip to main content
Log in

Immobilization of Co and Ni in Mining-Impacted Soils Using Phosphate Amendments

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Synthetic hydroxyapatite (HA) and natural phosphate rock (PR) were applied to heavy metal-contaminated soils from sulfide mine areas in Sardinia and Tuscany (Italy). The application of phosphate amendments to the polluted mine waste soils reduced water-soluble concentrations of Co and Ni by about 99 %. In general, phosphate treatment was slightly more effective in reducing water solubility of Co and Ni in the Sardinian soils than in the Tuscan ones. This result suggests that the mineralogical composition of the mine waste soils may impact the effectiveness of metal immobilization. The formation of complexes of the heavy metals on the surface of phosphate grains and partial dissolution of the amendments and precipitation of heavy metal-containing phosphates are the dominant immobilization mechanisms. Between the phosphate amendments, PR was slightly less effective than HA in immobilizing Co and Ni. This result could be attributed to PR inability to provide soluble phosphate. Although with lower effectiveness, the use of PR to immobilize heavy metals from contaminated soils may reduce the risk of phosphate-induced eutrophication due to the application of amendments with highly soluble phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Basta, N. T., Gradwohl, R., Snethen, K. L., & Schroder, J. L. (2001). Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate. Journal of Environmental Quality, 30, 1222–1230.

    Article  CAS  Google Scholar 

  • Boisson, J., Ruttens, A., Mench, M., & Vangronsveld, J. (1999). Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils. Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation. Environmental Pollution, 104, 225–233.

    Article  CAS  Google Scholar 

  • Boni, M., Costabile, S., De Vivo, B., & Gasparrini, M. (1999). Potential environmental hazard in the mining district of southern Iglesiente (SW Sardinia, Italy). Journal of Geochemical Exploration, 67, 417–430.

    Article  CAS  Google Scholar 

  • Boni, M., Gilg, H. A., Aversa, G., & Balassone, G. (2003). The “Calamine” of southwest Sardinia: Geology, mineralogy, and stable isotope geochemistry of supergene Zn mineralization. Economic Geology, 98, 731–748.

    Article  CAS  Google Scholar 

  • Boonfueng, T., Axe, L., Xu, Y., & Tyson, T. A. (2006). Nickel and lead sequestration in manganese oxide-coated montmorillonite. Journal of Colloid and Interface Science, 303, 87–98.

    Article  CAS  Google Scholar 

  • Brugger, J., McPhail, D. C., Wallace, M., & Waters, J. (2003). Formation of willemite in hydrothermal environments. Economic Geology, 98, 819–835.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L. Q., Chen, M., Singh, S. P., & Harris, W. G. (2002). Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. Environmental Science and Technology, 36, 5296–5304.

    Article  CAS  Google Scholar 

  • Cao, X. D., Ma, L. Q., Rhue, D. R., & Appel, C. S. (2004). Mechanisms of lead, copper and zinc retention by phosphate rock. Environmental Pollution, 131, 435–444.

    Article  CAS  Google Scholar 

  • Cao, X., Wahbi, A., Ma, L., Li, B., & Yang, Y. (2009). Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. Journal of Hazardous Materials, 164, 555–564.

    Article  CAS  Google Scholar 

  • Chen, J., Wang, Y., Zhou, D., Cui, Y., Wang, S., & Chen, Y. (2009). Adsorption and desorption of Cu(II), Zn(II), Pb(II), and Cu(II) on the soils amended with nanoscale hydroxyapatite. Environmental Progress and Sustainable Energy, 29, 233–241.

    Article  Google Scholar 

  • Chen, S., Xu, M., Ma, Y., & Yang, J. (2007). Evaluation of different phosphate amendments on availability of metals in contaminated soil. Ecotoxicology and Environmental Safety, 67, 278–285.

    Article  CAS  Google Scholar 

  • Chen, S. B., Zhu, Y. G., & Ma, Y. B. (2006). The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. Journal of Hazardous Materials, 134, 74–79.

    Article  CAS  Google Scholar 

  • Cipriani, C., & Tanelli, G. (1983). Risorse minerarie ed industria estrattiva in Toscana—note storiche ed economiche. Atti e Memorie dell’Accademia Toscana di Scienze e Lettere La Colombaria, 48, 243–283.

    Google Scholar 

  • Corami, A., Mignardi, S., & Ferrini, V. (2007). Copper and zinc decontamination from single- and binary-metal solutions using hydroxyapatite. Journal of Hazardous Materials, 146, 164–170.

    Article  CAS  Google Scholar 

  • Corami, A., D’Acapito, F., Mignardi, S., & Ferrini, V. (2008a). Removal of Cu from aqueous solutions by synthetic hydroxyapatite: EXAFS investigation. Materials Science and Engineering B, 149, 209–213.

    Article  CAS  Google Scholar 

  • Corami, A., Mignardi, S., & Ferrini, V. (2008b). Cadmium removal from single- and multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite. Journal of Colloid and Interface Science, 317, 402–408.

    Article  CAS  Google Scholar 

  • Corami, A., Mignardi, S., & Ferrini, V. (2008c). Removal of lead, copper, zinc and cadmium from water using phosphate rock. Acta Geologica Sinica – English, 82, 1223–1228.

    Article  CAS  Google Scholar 

  • Da Rocha, N. C. C., Decampos, R. C., Rossi, A. M., Moreira, E. L., Barbosa, A. F., & Moure, G. T. (2002). Cadmium uptake by hydroxyapatite synthesized in different conditions and submitted to thermal treatment. Environmental Science and Technology, 36, 1630–1635.

    Article  Google Scholar 

  • Dimović, S., Smičiklas, I., Plećaš, I., Antonović, D., & Mitrić, M. (2009). Comparative study of differently treated animal bones for Co2+ removal. Journal of Hazardous Materials, 164, 279–287.

    Article  Google Scholar 

  • Dybowska, A., Manning, D. A. C., Collins, M. J., Wess, T., Woodgate, S., & Valsami-Jones, E. (2009). An evaluation of the reactivity of synthetic and natural apatites in the presence of aqueous metals. Science of the Total Environment, 407, 2953–2965.

    Article  CAS  Google Scholar 

  • Elouear, Z., Ben Amor, R., Bouzid, J., & Boujelben, N. (2009). Use of phosphate rock for the removal of Ni2+ from aqueous solutions: Kinetic and thermodynamics studies. Journal of Environmental Engineering – ASCE, 135, 259–265.

    Article  CAS  Google Scholar 

  • Elouear, Z., Bouzid, J., Boujelben, N., Feki, M., Jamoussi, F., & Montiel, A. (2008). Heavy metal removal from aqueous solutions by activated phosphate rock. Journal of Hazardous Materials, 156, 412–420.

    Article  CAS  Google Scholar 

  • Hannachi, Y., Affanacivich Shapovalov, N., & Hannachi, A. (2010). Adsorption of nickel from aqueous solution by the use of low-cost adsorbents. Korean Journal of Chemical Engineering, 27, 152–158.

    Article  CAS  Google Scholar 

  • Hashimoto, Y., Taki, T., & Sato, T. (2009). Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions. Journal of Environmental Management, 90, 1782–1789.

    Article  CAS  Google Scholar 

  • Hettiarachchi, G. M., Pierzynski, G. M., & Ransom, M. D. (2001). In situ stabilization of soil lead using phosphorus. Journal of Environmental Quality, 30, 1214–1221.

    Article  CAS  Google Scholar 

  • Huang, Y., Chen, L., & Wang, H. (2012). Removal of Co(II) from aqueous solution by using hydroxyapatite. Journal of Radioanalytical and Nuclear Chemistry, 291, 777–785.

    Article  CAS  Google Scholar 

  • Islam, M., Mishra, P. C., & Patel, R. (2010). Physicochemical characterization of hydroxyapatite and its application towards removal of nitrate from water. Journal of Environmental Management, 91, 1883–1891.

    Article  CAS  Google Scholar 

  • Jeanjean, J., Vincent, U., & Fedoroff, M. (1994). Structural modification of calcium hydroxyapatite induced by sorption of cadmium ions. Journal of Solid State Chemistry, 108, 68–72.

    Article  CAS  Google Scholar 

  • Kadirvelu, K., Thamaraiselvi, K., & Namasivayam, C. (2001). Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith. Separation and Purification Technology, 24, 497–505.

    Article  CAS  Google Scholar 

  • Kaplan, D. I., & Knox, A. S. (2004). Enhanced contaminant desorption induced by phosphate mineral additions to sediment. Environmental Science and Technology, 38, 3153–3160.

    Article  CAS  Google Scholar 

  • Laperche, V., Logan, T. J., Gaddam, P., & Traina, S. J. (1997). Effect of apatite amendments on plant uptake of lead from contaminated soil. Environmental Science and Technology, 31, 2745–2753.

    Article  CAS  Google Scholar 

  • Laperche, V., Traina, S. J., Gaddam, P., & Logan, T. J. (1996). Chemical and mineralogical characterizations of Pb in a contaminated soil: Reactions with synthetic apatite. Environmental Science and Technology, 30, 3321–3326.

    Article  CAS  Google Scholar 

  • Ma, L. Q., Choate, A. L., & Rao, G. N. (1997). Effects of incubation and phosphate rock on lead extractability and speciation in contaminated soils. Journal of Environmental Quality, 26, 801–807.

    Article  CAS  Google Scholar 

  • Ma, Q. Y., Traina, S. J., Logan, T. J., & Ryan, J. A. (1993). In situ lead immobilization by apatite. Environmental Science and Technology, 27, 1803–1810.

    Article  CAS  Google Scholar 

  • Ma, Q. Y., Traina, S. J., Logan, T. J., & Ryan, J. A. (1994). Effects of aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environmental Science and Technology, 28, 1219–1228.

    Article  CAS  Google Scholar 

  • Marchat, D., Bernache-Assollant, D., & Champion, E. (2007). Cadmium fixation by synthetic hydroxyapatite in aqueous solution—Thermal behaviour. Journal of Hazardous Materials, 139, 453–460.

    Article  CAS  Google Scholar 

  • Mavropoulos, E., Rocha, N. C. C., Moreira, J. C., Bertolino, L. C., & Rossi, A. M. (2005). Pb2+, Cu2+ and Cd2+ ions uptake by Brazilian phosphate rocks. Journal of the Brazil Chemical Society, 16, 62–68.

    Article  CAS  Google Scholar 

  • Mavropoulos, E., Rossi, A. M., Costa, A. M., Perez, C. A., Moreira, J. C., & Saldanha, M. (2002). Studies on the mechanism of lead immobilization by hydroxyapatite. Environmental Science and Technology, 36, 1625–1629.

    Article  CAS  Google Scholar 

  • Mignardi, S., Corami, A., & Ferrini, V. (2012). Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Chemosphere, 86, 354–360.

    Article  CAS  Google Scholar 

  • Mobasherpour, I., Salahi, E., & Pazouki, M. (2011). Removal of nickel (II) from aqueous solutions by using nano-crystalline calcium hydroxyapatite. Journal of Saudi Chemical Society, 15, 105–112.

    Article  CAS  Google Scholar 

  • Moore, F., & Aghazadeh, A. A. (2012). Trace metal occurrence and mobility assessment in stream sediments near the Sungun porphyry copper deposit in northwest Iran. Mine Water and the Environment, 31, 29–39.

    Article  CAS  Google Scholar 

  • Mouflih, M., Aklil, A., & Sebti, S. (2005). Removal of lead from aqueous solutions by activated phosphate. Journal of Hazardous Materials, 119, 183–188.

    Article  CAS  Google Scholar 

  • Oliva, J., De Pablo, J., Cortina, J. L., Cama, J., & Ayora, C. (2011). Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II™: Column experiments. Journal of Hazardous Materials, 194, 312–323.

    Article  CAS  Google Scholar 

  • Pan, X., Wang, J., & Zhang, D. (2009). Sorption of cobalt to bone char: Kinetics, competitive sorption and mechanism. Desalination, 249, 609–614.

    Article  CAS  Google Scholar 

  • Patmavathy, V., Vasudevan, P., & Dhingra, S. C. (2003). Biosorption of nickel(II) ions on Baker’s yeast. Process Biochemistry, 38, 1389–1395.

    Article  Google Scholar 

  • Pérez-Novo, C., Bermúdez-Couso, A., López-Periago, E., Fernández-Calviño, D., & Arias-Estévez, M. (2011). Zinc adsorption in acid soils. Influence of phosphate. Geoderma, 162, 358–364.

    Article  Google Scholar 

  • Perrone, J., Fourest, B., & Giffaut, E. (2001). Sorption of nickel on carbonate fluorapatites. Journal of Colloid and Interface Science, 239, 303–313.

    Article  CAS  Google Scholar 

  • Raičević, S., Perovic, V., & Zouboulis, A. I. (2009). Theoretical assessment of phosphate amendments for stabilization of (Pb + Zn) in polluted soil. Waste Management, 29, 1779–1784.

    Article  Google Scholar 

  • Seaman, J. C., Arey, J. S., & Bertsch, P. M. (2001). Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition. Journal of Environmental Quality, 30, 460–469.

    Article  CAS  Google Scholar 

  • Shi, Z., & Erickson, L. E. (2001). Mathematical model development and simulation of in situ stabilization in lead-contaminated soils. Journal of Hazardous Materials, 87, 99–116.

    Article  CAS  Google Scholar 

  • Smičiklas, I., Dimović, S., Plećaš, I., & Mitrić, M. (2006). Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Research, 40, 2267–2274.

    Article  Google Scholar 

  • Smičiklas, I., Onjia, A., Raičević, S., Janaćković, D., & Mitrić, M. (2008). Factors influencing the removal of divalent cations by hydroxyapatite. Journal of Hazardous Materials, 152, 876–884.

    Article  Google Scholar 

  • Sugiyama, S., Ichii, T., Masayoshi, F., Katsuhiro, K., Tahei, T., Shigemoto, N., & Hayashi, H. (2003). Heavy metal immobilization in aqueous solution using calcium phosphate and calcium hydrogen phosphates. Journal of Colloid and Interface Science, 259, 408–410.

    Article  CAS  Google Scholar 

  • Tanelli, G., & Lattanzi, P. (1983). Pyritic ores of Southern Tuscany. In J. P. R. De Villiers & P. A. Cawthorn (Eds.). Proceedings of International Congress on Applied Mineralogy ICAM 81. Special Publication, Geological Society of South Africa, 7, 315–323.

  • Xu, Y., Schwartz, F. W., & Traina, S. J. (1994). Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environmental Science and Technology, 28, 1472–1480.

    Article  CAS  Google Scholar 

  • Yavuz, O., Altunkaynak, Y., & Guzel, F. (2003). Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research, 37, 948–952.

    Article  CAS  Google Scholar 

  • Yoon, J. K., Cao, X., & Ma, L. Q. (2007). Application methods affect phosphorus-induced lead immobilization from a contaminated soil. Journal of Environmental Quality, 36, 373–378.

    Article  CAS  Google Scholar 

  • Zhang, P., & Ryan, J. A. (1998). Formation of pyromorphite in anglesite–hydroxyapatite suspensions under varying pH conditions. Environmental Science and Technology, 32, 3318–3324.

    Article  CAS  Google Scholar 

  • Zhang, P., & Ryan, J. A. (1999). Transformation of Pb(II) from cerussite to chloropyromorphite in the presence of hydroxyapatite under varying conditions of pH. Environmental Science and Technology, 33, 625–630.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank M. Albano, T. Coppola, and S. Stellino for their laboratory assistance. S.M. and A.C. carried out the experimental work, the collection and analysis of the data, the interpretation of results, and the preparation of this paper following the suggestions of V.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvano Mignardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mignardi, S., Corami, A. & Ferrini, V. Immobilization of Co and Ni in Mining-Impacted Soils Using Phosphate Amendments. Water Air Soil Pollut 224, 1447 (2013). https://doi.org/10.1007/s11270-013-1447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1447-y

Keywords

Navigation