Skip to main content
Log in

Utilization of Passion Fruit Skin By-Product as Lead(II) Ion Biosorbent

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, residues of passion fruit skin were examined as biosorbent materials, evaluating their capacity to adsorb lead(II) ions in in natura skin (SK-N) and two modified skins, with NaOH (SK-S) and with NaOH and citric acid (SK-SCA). The biomass characterization was done through Fourier transform infrared spectroscopy which confirmed the chemical modification by a peak at 1,730 cm−1. Also, scanning electron microscopy analyses were done, where the increase of residue roughness was observed after the modification. And finally, the values of point of zero charge were determined and were lower than 5.5 for all residues. In the experiments of adsorption in function of pH, it was verified that after pH 4, the adsorbed amount was practically constant. Regarding the necessary time to reach equilibrium, the value that was found was approximately 170 min, and kinetics followed the behavior described by the pseudo-second-order equation. The maximum adsorption capacity was 204 mg g−1 for the SK-SCA biomass. The residues followed Langmuir adsorption model. Through thermodynamic parameters, it was verified that adsorption occurs spontaneously due to the negative values of Gibbs' energy. Moreover, desorption studies showed that adsorbed ions may be recovered in two cycles. Thus, due to the high adsorption capacity of lead ions, passion fruit skin can be utilized in filters to retain this metal in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbas, M., Nadeem, R., Zafar, M. N., & Arshad, M. (2008). Biosorption of chromium (III) and chromium (VI) by untreated and pretreated Cassia fistula biomass from aqueous solutions. Water, Air, And Soil Pollution, 191, 139–148.

    Article  CAS  Google Scholar 

  • Aksu, Z. (2002). Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris. Process Biochemistry, 38, 89–99.

    Article  CAS  Google Scholar 

  • Brignani, F. N. (2002). Produção integrada de maracujá. Biológico, 64(2), 195–197.

    Google Scholar 

  • Carson, B. L., Ellis, H. V., & Mc Cann, J. L. (1986). Toxicology and biological monitoring of metals in humans. Chelsea: Lewis.

    Google Scholar 

  • Cheung, C. W., Poter, J. F., & Mckay, G. (2000). Sorption kinetics for the removal of copper and zinc from effluents using bone char. Separation and Purification Technology, 19, 55–64.

    Article  CAS  Google Scholar 

  • Cho, D. H., & Kim, E. Y. (2003). Characterization of Pb2+ from aqueous solution by Rhodoturula glutinis. Bioprocess and Biosystems Engineering, 25, 271–277.

    CAS  Google Scholar 

  • Dahiya, S., Tripathi, R. M., & Hegde, A. G. (2008). Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass. Journal of Hazardous Materials, 150, 376–386.

    Article  CAS  Google Scholar 

  • De Souza, V. T. M., Diniz, K. M., Massocatto, C. L., Tarley, C. R. T., Caetano, J., & Dragunski, D. C. (2012). Removal of Pb (II) from aqueous solution with orange sub-products chemically modified as biosorbent. BioResources, 7(2), 2300–2318.

    Google Scholar 

  • Dogan, M., Alkan, M., Türkyilmaz, A., & Özdemir, Y. (2004). Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. Journal of Hazardous Materials, B109, 141–148.

    Google Scholar 

  • Dos Santos, V. C. G. J., Tarley, C. R. T., Caetano, J., & Dragunski, D. C. (2010). Assessment of chemically modified sugarcane bagasse for lead adsorption from aqueous medium. Water Science and Technology, 62(2), 457–465.

    Article  Google Scholar 

  • Dos Santos, V. C. G. J., De Souza, V. T. M., Tarley, C. R. T., Caetano, J., & Dragunski, D. C. (2011). Copper ions adsorption from aqueous medium using the biosorbent sugarcane bagasse in natura and chemically modified. Water, Air, And Soil Pollution, 216, 351–359.

    Article  Google Scholar 

  • Feng, N., Guo, X., & Liang, S. (2009). Adsorption study of copper (II) by chemically modified orange peel. Journal of Hazardous Materials, 164, 1286–1292.

    Article  CAS  Google Scholar 

  • Fonseca, K. G., Faleiro, F. G., Peixoto, J. R., Junqueira, N. T. V., Silva, M. S., Bellon, G., et al. (2009). Análise da recuperação do genitor recorrente em maracujazeiro-azedo por meio de marcadores RAPD. Revista Brasileira de Fruticultura, 31(1), 145–153.

    Article  Google Scholar 

  • Gonçalves, M., Oliveira, L. C. A., & Guerreiro, M. C. (2008). Magnetic niobia as adsorbent of organic contaminants in aqueous medium: effect of temperature and pH. Química Nova, 31, 518–522.

    Article  Google Scholar 

  • Guerra, D. L., Airoldi, C., Lemos, V. P., Angélica, R. S., & Viana, R. R. (2008). Application of Zr/Ti-PILC in the adsorption process of Cu(II), Co(II) and Ni(II) using adsorption physico-chemical models and thermodynamics of the process. Química Nova, 31, 353–359.

    Article  CAS  Google Scholar 

  • Han, R. P., Zhang, J. J., Han, P., Wang, Y. F., Zhao, Z. H., & Tang, M. S. (2009). Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite. Chemical Engineering Journal, 145, 496–504.

    Article  CAS  Google Scholar 

  • Ho, Y. S. (2003). Removal of copper ions from aqueous solution by tree fern. Water Research, 37, 2323–2330.

    Article  CAS  Google Scholar 

  • Li, Y. H., Di, Z., Ding, J., Wu, D., Luan, Z., & Zhu, Y. (2005). Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Research, 39, 605–609.

    Article  CAS  Google Scholar 

  • Mack, C., Wilhelmi, B., Duncan, J. R., & Burgess, J. E. (2007). Biosorption of precious metals. Biotechnology Advances, 25, 264–271.

    Article  CAS  Google Scholar 

  • Malkoc, E., & Nuhoglu, Y. (2007). Determination of kinetic and equilibrium parameters of the batch adsorption of Cr (VI) onto waste acorn of Quercus ithaburensis. Chemical Engineering Process, 46, 1020–1029.

    Article  CAS  Google Scholar 

  • Manica, I. (1981). Fruticultura tropical 1: Maracujá. Sao Paulo: Agronômica Ceres.

    Google Scholar 

  • Marques, P. A., Pinheiro, H. M., Teixeira, J. A., & Rosa, M. F. (1999). Removal efficiency of Cu2+, Cd2+ and Pb2+ by waste brewery biomass: pH and cation association effects. Desalination, 16, 36–44.

    Google Scholar 

  • Martins, R. J. E., Pardo, R., & Boaventura, R. A. R. (2004). Cadmium(II) and zinc(II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness. Water Research, 38, 693–699.

    Article  CAS  Google Scholar 

  • Ngah, W. S. W., & Hanafiah, M. A. K. M. (2008). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresource Technology, 99, 3935–3948.

    Article  Google Scholar 

  • Noeline, B. F., Manohar, D. M., & Anirudhan, T. S. (2005). Kinetic and equilibrium modelling of lead(II) sorption from water and wastewater by polymerized banana stem in a batch reactor. Separation and Purification Technology, 45, 131–140.

    Article  CAS  Google Scholar 

  • Nurchi, V. M., & Villaescusa, I. (2008). Agricultural biomasses as sorbents of some trace metals. Coordination Chemistry Reviews, 252, 1178–1188.

    Article  CAS  Google Scholar 

  • Özacar, M., & Sengil, İ. A. (2003). Adsorption of reactive dyes on calcined alunite from aqueous solutions. Journal of Hazardous Materials, B98, 211–224.

    Article  Google Scholar 

  • Pavan, F. A., Lima, I. S., Lima, E. C., Airoldi, C., & Gushikem, Y. (2006). Use of Ponkan mandarin peels as biosorbent for toxic metals uptake from aqueous solutions. Journal of Hazardous Materials, 137, 527–533.

    Article  CAS  Google Scholar 

  • Pavan, F. A., Gushikem, Y., Mazzocato, A. C., Dias, S. L. P., & Lima, E. C. (2007). Statistical design of experiments as a tool for optimizing the batch conditions to methylene blue adsorption on yellow passion fruit and mandarin peels. Dyes and Pigments, 72, 257–266.

    Article  Google Scholar 

  • Pehlivan, E., Altun, T., Cetin, S., & Bhanger, M. I. (2009). Lead sorption by waste biomass of hazelnut and almond shell. Journal of Hazardous Materials, 167, 1203–1208.

    Article  CAS  Google Scholar 

  • Pérez-Marín, A. B., Zapata, V. M., Ortuño, J. F., Aguilar, M., Sáez, J., & Lloréns, M. (2007). Removal of cadmium from aqueous solutions by adsorption onto orange waste. Journal of Hazardous Materials, B139, 122–131.

    Article  Google Scholar 

  • Regalbuto, J. R., & Robles, J. (2004). The engineering of Pt/Carbon Catalyst Preparation. University of Illionis

  • Rodrigues, R. F., Trevezoli, R. L., Santos, L. R. G., Leão, V. A., & Botaro, V. R. (2006). Adsorção de metais pesados em serragem de madeira tratada com ácido nítrico. Engenharia Sanitária e Ambiental, 11(1), 21–26.

    Google Scholar 

  • Schiewer, S., & Patil, S. B. (2008). Pectin-rich fruit wastes as biosorbents for heavy metal removal: equilibrium and kinetics. Bioresource Technology, 99, 1896–1903.

    Article  CAS  Google Scholar 

  • Sodré, F. F., Lenzi, E., & Costa, A. C. (2001). Applicability of adsorption models to the study of copper behaviour in clayey soils. Química Nova, 24, 324–330.

    Article  Google Scholar 

  • Srivasta, V. C., Mall, I. D., & Mishra, I. M. (2008). Adsorption of toxic metal ions onto activated carbon. Study of sorption behaviour through characterization and kinetics. Chemical Engineering and Processing, 47, 1269–1280.

    Article  Google Scholar 

  • Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbents for sequestering heavy metal from aqueous solutions—a review. Bioresource Technology, 99, 6017–6027.

    Article  CAS  Google Scholar 

  • Tan, G., Hongyan, Y., Yong, L., & Dan, X. (2010). Removal of lead from aqueous solution with native and chemically modified corncobs. Journal of Hazardous Materials, 174, 740–745.

    Article  CAS  Google Scholar 

  • Tarley, C. R. T., & Arruda, M. A. Z. (2004). Biosorption of heavy metals using rice milling by-products. Characterisation and application for removal of metals from aqueous effluents. Chemosphere, 54, 987–995.

    Article  Google Scholar 

  • Unuabonah, E. I., Adebowale, K. O., & Olu-Owolabi, B. I. (2007). Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay. Journal of Hazardous Materials, 144, 386–395.

    Article  CAS  Google Scholar 

  • Veglio, F., & Beolchini, F. (1997). Removal of metals by biosorption: a review. Hydrometallurgy, 44(3), 301–316.

    Article  CAS  Google Scholar 

  • Volesky, B. (2007). Review biosorption and me. Water Research, 41, 4017–4029.

    Article  CAS  Google Scholar 

  • Yao, Z. Y., Qi, J. H., & Wang, L. H. (2010). Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu (II) onto chestnut shell. Journal of Hazardous Materials, 174, 137–143.

    Article  CAS  Google Scholar 

  • Yu, B., Zhang, Y., Shukla, A., Shukla, S. S., & Dorris, K. L. (2000). The removal of heavy metal from aqueous solutions by sawdust adsorption removal of copper. Journal of Hazardous Materials, B80, 33–42.

    Article  Google Scholar 

  • Zhexian, X., Yanru, T., Xiaomin, L., Yinghui, L., & Fang, L. (2006). Study on the equilibrium, kinetics and isotherm of biosorption of lead ions onto pretreated chemically modified orange peel. Biochemical Engineering, 31, 160–164.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Universidade Paranaense, UNIPAR. The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico, Fundação Araucária do Paraná, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for the financial support and fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Cardoso Dragunski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerola, G.P., Boas, N.V., Caetano, J. et al. Utilization of Passion Fruit Skin By-Product as Lead(II) Ion Biosorbent. Water Air Soil Pollut 224, 1446 (2013). https://doi.org/10.1007/s11270-013-1446-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1446-z

Keywords

Navigation