Water, Air, & Soil Pollution

, 224:1385 | Cite as

Electrochemical Reduction Prior to Electro-Fenton Oxidation of Azo Dyes: Impact of the Pretreatment on Biodegradability

  • F. Fourcade
  • M. Delawarde
  • L. Guihard
  • S. Nicolas
  • A. Amrane
Article

Abstract

The aim of this work was to study the degradation of three azo dyes, Orange II, Methyl red and Biebrich Scarlet by electro-Fenton and the effect of the electrochemical pretreatment on the biodegradability of the solutions. The electrochemical pretreatment showed that an electrochemical reduction on the carbon felt electrode was mainly responsible for the decolorization of the azo dyes. Indeed, the electrochemical behaviour of the azo dyes highlighted their electroactivity; electrolysis with and without ferric ions led to the same decolorization yield, namely 99 % at 15 min for Methyl red, and stable chemical oxygen demand (COD) values were recorded during decolorization. In a second step and owing to the absence of by-product electroactivity in reduction, the formation of hydroxyl radicals by the Fenton reaction led to the oxidation of by-products from the electrochemical reduction. It was illustrated by the decrease recorded for the COD values. The results also showed that the azo bond cleavage occurring during the electrochemical reduction was not sufficient to significantly reduce recalcitrance, as shown from biological oxygen demand (BOD)5/COD ratio examination below the limit of biodegradability (0.4). Contrarily, a positive trend was recorded for Orange II during the electro-Fenton reaction, with a BOD5/COD ratio of 0.81 after 28 h of pretreatment.

Keywords

Electro-Fenton Electrochemical reduction Azo dye Biodegradability 

References

  1. Arslan, I., Bacioglou, I. A., Tuhkanen, T., & Bahnemann, D. (2000). H2O2/UV-C and Fe2+/H2O2/UV-C versus TiO2/UV-A treatment for reactive dye wastewater. Journal of Environmental Engineering, 126, 903–911.CrossRefGoogle Scholar
  2. Auriol, M., Filali-Meknassi, Y., Tyagi, R. D., & Adams, C. D. (2006). Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochemistry, 41, 525–539.CrossRefGoogle Scholar
  3. Borras, N., Arias, C., Oliver, R., & Brillas, E. (2011). Mineralization of desmetryne by electrochemical advanced oxidation processes using a boron-doped diamond anode and an oxygen-diffusion cathode. Chemosphere, 85, 1167–1175.CrossRefGoogle Scholar
  4. Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry. Chemical Reviews, 109, 6570–6631.CrossRefGoogle Scholar
  5. Brown, M. A., & De Vito, S. C. (1993). Predicting azo dye toxicity. Critical Reviews in Environmental Science and Technology, 23, 249–324.CrossRefGoogle Scholar
  6. Buxton, G. U., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constant for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (HO°/O°). Journal of Physical Chemistry, 17(2), 513–759.Google Scholar
  7. Chaudhuri, S. K., & Sur, B. (2000). Oxidative decolorization of reactive dye solution using fly ash as catalyst. Journal of Environmental Engineering, 126, 583–594.CrossRefGoogle Scholar
  8. Chebli, D., Fourcade, F., Brosillon, S., Nacef, S., & Amrane, A. (2010). Supported photocatalysis as a pre-treatment prior to biological degradation for the removal of some dyes from aqueous solutions; Acide Red 183, Biebrich Scarlet, Methyl Red Sodium Salt, Orange II. Journal of Chemical Technology and Biotechnology, 85(4), 555–563.Google Scholar
  9. Cheng, X. H., & Guo, W. (2007). The oxidation kinetics of reduction intermediate product of methyl red with hydrogen peroxide. Dyes and Pigments, 72, 372–377.CrossRefGoogle Scholar
  10. Chiron, S., Fernadez-Alba, A., Rodriguez, A., & Garcia-Calvo, E. (2000). Pesticide chemical oxidation: state of the art. Water Research, 34(2), 366–377.CrossRefGoogle Scholar
  11. Comninellis, C., Kapalka, A., Malato, M., Parsons, S. A., Poulios, I., & Mantzavinos, D. (2008). Perspective advanced oxidation processes for water treatment: advances and trends for R&D. Journal of Chemical Technology and Biotechnology, 83, 769–776.CrossRefGoogle Scholar
  12. Cruz-Gonzales, K., Torres-Lopez, O., Garcia-Leon, A. M., Brillas, E., Hernandez-Ramirez, A., & Peralta-Hernandez, J. M. (2012). Optimization of electro-Fenton/BDD process for decolorization of a model azo dye wastewater by means of response surface methodology. Desalination, 286, 63–68.CrossRefGoogle Scholar
  13. Daneshvar, N., Aber, S., Vatanpour, V., & Rasoulifard, M. H. (2008). Electro-Fenton treatment of dye solution containing Orange II: influence of operational parameters. Journal of Electroanalytical Chemistry, 615(2), 165–174.CrossRefGoogle Scholar
  14. De La Rochebrochard D'Auzay, S., Brosillon, S., Fourcade, F., & Amrane, A. (2007). Integrated process for degradation of amitrole in wastewaters: photocatalysis/biodegradation. International Journal of Chemical Reactor Engineering, 5, A51.Google Scholar
  15. Dominguez, J. R., Beltran, J., & Rodriguez, O. (2005). Vis and UV photocatalytic detoxification methods (using TiO2, TiO2/H2O2, TiO2/S2O8 2−, O3, H2O2, S2O8 2−, Fe3+/H2O2, and Fe3+/H2O2/C2O4 2−) for dyes treatment. Catalysis Today, 101, 389–395.CrossRefGoogle Scholar
  16. Forgacs, E., Cserhati, T., & Oros, G. (2004). Removal of synthetic dye from wastewater: a review. Environment International, 30, 953–971.CrossRefGoogle Scholar
  17. Gallard, H., De Laat, J., & Legube, B. (1998). Influence du pH sur la vitesse d'oxydation de composés organiques par Fe(II)/H2O2. Mécanismes réactionnel et modélisation. New Journal of Chemistry, 2(3), 263–268.CrossRefGoogle Scholar
  18. Guivarch, E. (2004). Traitement des polluants organiques en milieux aqueux par procédé électrochimique d'oxydation avancée "Electro-Fenton". Application à la minéralisation des colorants synthétiques: PhD thesis, Université Marne la Vallée, France.Google Scholar
  19. Guivarch, E., Oturan, N., & Oturan, M. A. (2003). Removal of organophosphorus pesticides from water by electrogenerated Fenton's reagent. Environmental Chemistry Letters, 1, 165–168.CrossRefGoogle Scholar
  20. Guivarch, E., Trevin, S., Lahitte, C., & Oturan, M. A. (2003). Degradation of azo dyes in water by electro-Fenton process. Environmental Chemistry Letters, 1, 38–44.CrossRefGoogle Scholar
  21. Hachem, C., Bocquillon, F., Zahraa, O., & Bouchy, M. (2001). Decolourization of textile industry wastewater by the photocatalytic degradation process. Dyes and Pigments, 49, 117–125.CrossRefGoogle Scholar
  22. Hammami, S., Bellakhal, N., Oturan, N., Oturan, M. A., & Dachraoui, M. (2008). Degradation of Acid Orange 7 by electrochemically generated OH radicals in acidic aqueous medium using a boron-doped diamond or platinum anode: a mechanistic study. Chemosphere, 73, 678–684.CrossRefGoogle Scholar
  23. Ledakowicz, S., Solecka, M., & Zylla, R. (2001). Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. Journal of Biotechnology, 89, 175–184.CrossRefGoogle Scholar
  24. Lund, H., & Hammerich, O. (2001). Organic electrochemistry (4th ed.). New York: Marcel Decker, INC.Google Scholar
  25. Oller, I., Malato, S., & Sanchez-Perez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 409, 4141–4166.CrossRefGoogle Scholar
  26. Oppenländer, T. (2003). Photochemical purification of water and air advanced oxidation processes (AOPs): Principles, reactions mechanisms, reactor concepts. London: Wiley-VCH.Google Scholar
  27. Oturan, M. A., & Pinson, J. (1995). Hydroxylation by electrochemically generated OH radicals. Mono- and polyhydroxylation of benzoic acid: products and isomer's distribution. Journal of Physical Chemistry, 99, 13948–13954.CrossRefGoogle Scholar
  28. Ozcan, A., Sahin, Y., Koparal, A. S., & Oturan, M. A. (2008). Carbon sponge as a new cathode material for the electro-Fenton process: comparison with carbon felt cathode and application to degradation of synthetic dye Basic Blue 3 in aqueous medium. Journal of Electroanalytical Chemistry, 616, 71–78.CrossRefGoogle Scholar
  29. Ozcan, A., Oturan, M. A., Oturan, N., & Sahin, Y. (2009). Removal of Acid Orange 7 from water by electrochemically generated Fenton's reagent. Journal of Hazardous Materials, 163(2–3), 1213–1220.CrossRefGoogle Scholar
  30. Panizza, M., & Cerisola, G. (2009). Electro-Fenton degradation of synthetic dyes. Water Research, 43, 339–344.CrossRefGoogle Scholar
  31. Poyatos, J. M., Munio, M. M., Almecija, M. C., Torres, J. C., Hontorio, E., & Osorio, F. (2010). Advanced oxidation processes for wastewater treatment: state of the art. Water, Air, and Soil Pollution, 205(1–4), 187–204.CrossRefGoogle Scholar
  32. Qiang, Z., Chang, J. H., & Huang, C. P. (2002). Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Research, 36, 85–94.CrossRefGoogle Scholar
  33. Qiang, Z., Chang, J. H., & Huang, C. P. (2003). Electrochemical generation of Fe2+ in Fenton oxidation processes. Water Research, 37(6), 1308–1319.CrossRefGoogle Scholar
  34. Ramirez, H. J., Costa, C. A., & Madeira, L. M. (2005). Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton's reagent. Catalysis Today, 107–108, 68–76.CrossRefGoogle Scholar
  35. Ramirez, J. H., Duarte, F. M., Martins, F. G., Costa, C. A., & Madeira, L. M. (2009). Modelling of the synthetic dye Orange II degradation using Fenton's reagent: from batch to continuous reactor operation. Chemical Engineering Journal, 148, 394–404.CrossRefGoogle Scholar
  36. Robinson, T., McMullan, G., Marchand, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255.CrossRefGoogle Scholar
  37. Rosales, E., Pazos, M., Longo, M. A., & Sanroman, M. A. (2009). Electro-Fenton decoloration of dyes in continuous reactor: a promising technology in colored wastewater treatment. Chemical Engineering Journal, 155(1–2), 62–67.CrossRefGoogle Scholar
  38. Scott, J. P., & Ollis, D. F. (1995). Integration of chemical and biological processes for water treatment: review and recommendations. Environmental Progress, 14, 88–103.CrossRefGoogle Scholar
  39. Scott, J. P., & Ollis, D. F. (1997). Integration of chemical and biological oxidation processes for water treatment: II. Recent illustrations and experiences. The Journal of Advanced Oxidation Technologies, 2, 374–381.Google Scholar
  40. Sires, I., Guivarch, E., Oturan, N., & Oturan, M. A. (2008). Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton's reagent at carbon-felt electrode. Chemosphere, 72, 592–600.CrossRefGoogle Scholar
  41. Stock, N. L., Peller, J., Vinodgopal, K., & Kamat, P. V. (2000). Combinative sonolysis and photocatalysis for textile dye degradation. Environmental Science and Technology, 34, 1747–1750.CrossRefGoogle Scholar
  42. Sun, S. P., Li, C. J., Sun, J. H., Shib, S. H., Fand, M. H., & Zhoua, Q. (2009). Decoloration of an azo dye Orange G in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study. Journal of Hazardous Materials, 161, 1052–1057.CrossRefGoogle Scholar
  43. Tantak, N. P., & Chaudhari, S. (2006). Degradation of azo dyes by sequential Fenton's oxidation and aerobic biological treatment. Journal of Hazardous Materials, 136(6), 698–705.CrossRefGoogle Scholar
  44. Wang, A., Qu, J., Ru, J., Liu, H., & Ge, J. (2005). Mineralization of an azo-dye Acid Red 14 by electro-Fenton's reagent using an activated carbon fiber cathode. Dyes and Pigments, 65, 227–233.CrossRefGoogle Scholar
  45. Xu, G., O'Dea, J. J., & Osteryoung, J. G. (1996). Surface reduction study of monoazo dyes by adsorptive square wave voltammetry. Dyes and Pigments, 30(3), 201–223.CrossRefGoogle Scholar
  46. Zhou, M., Yu, Q., Lei, L., & Barton, G. (2007). Electro-Fenton method for the removal of Methyl Red in an efficient electrochemical system. Separation and Purification Technology, 57(2), 380–387.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • F. Fourcade
    • 1
    • 3
  • M. Delawarde
    • 1
    • 3
  • L. Guihard
    • 2
    • 3
  • S. Nicolas
    • 2
    • 3
  • A. Amrane
    • 1
    • 3
  1. 1.Université de Rennes 1CNRS, UMR 6226Rennes Cedex 7France
  2. 2.Département Chimie, IUT de RennesUniversité de Rennes 1Rennes CedexFrance
  3. 3.Université europeenne de BretagneRennesFrance

Personalised recommendations