Skip to main content
Log in

Chemical Leaching of Antimony and Other Metals from Small Arms Shooting Range Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Military small arms shooting range (SASR) soils are heavily polluted by metals like copper, lead, antimony, and zinc. This study was carried out to define efficient operating conditions to solubilize these metals by a chemical leaching technique. The comparison of different leaching reagents (HCl, H2SO4, CH3COOH, and EDTA) has revealed that sulfuric acid leaching coupled with the addition of sodium chloride is the most interesting option for the solubilization of Cu, Pb, Sb, and Zn from the finest fractions (<125 μm) of SASR soil. The initial metal contents of the soil sample were 1,760 mg Cu kg−1, 43,300 mg Pb kg−1, 780 mg Sb kg−1, and 355 mg Zn kg−1. The important operational parameters for leaching ([H2SO4], [NaCl], pulp density, reaction time, and temperature) were also studied. The optimum leaching conditions identified were 1 M H2SO4 and 4 M NaCl with a 10 % (w/v) soil pulp density at ambient temperature. In these conditions, 83, 75, 61, and 72 % of Cu, Pb, Sb, and Zn were respectively solubilized after only 1 h of treatment. The use of five successive leaching steps and two washing steps removed 96, 99, 84 and 86 % of Cu, Pb, Sb, and Zn respectively from the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA. (1999). Standards methods for examination of water and wastewaters. Washington, DC: American Public Health Association (APHA), American Water Works Association (AWWA) and Water Pollution Control Federation (WPCF).

    Google Scholar 

  • Astrup, T., Boddum, J. K., & Christensen, T. H. (1999). Lead distribution and mobility in a soil embankment used as a bullet stop at a shooting range. Journal of Soil Contamination, 8(6), 653–665.

    Article  CAS  Google Scholar 

  • Bannon, D. I., Drezler, J. W., Fent, G. M., Casteel, S. W., Hunter, P. J., Brattin, W. J., & Major, M. A. (2009). Evaluation of small arms range soils for metal contamination and lead bioavailability. Environmental Science & Technology, 43(24), 9071–9076.

    Article  CAS  Google Scholar 

  • Barbaroux, R., Meunier, N., Mercier, G., Taillard, V., Morel, J. L., Simonnot, M. O., & Blais, J. F. (2009). Chemical leaching of nickel from the seeds of the metal hyperaccumulator plant Alyssum murale. Hydrometallurgy, 100, 10–14.

    Article  CAS  Google Scholar 

  • Bergeron, M. (2005). Method of decontaminating soil. US Patent No. US6915908B2.

  • Blais, J. F., Djedidi, Z., Ben Cheikh, R., Tyagi, R. D., & Mercier, G. (2008). Metals precipitation from effluents—a review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12(3), 135–149.

    Article  CAS  Google Scholar 

  • Blais, J. F., Meunier, N., & Mercier, G. (2010). Toxic metals removal from contaminated sites. Recent Patents on Engineering, 4(1), 1–6.

    Article  CAS  Google Scholar 

  • Cao, X., & Dermatas, D. (2008). Evaluating the applicability of regulatory leaching tests for assessing lead leachability in contaminated shooting range soils. Environmental Monitoring and Assessment, 139, 1–13.

    Article  CAS  Google Scholar 

  • Cao, X. D., Dermatas, D., Xu, X. F., & Shen, G. (2008). Immobilization of lead in shooting range soils by means of cement, quicklime, and phosphate amendments. Environmental Science and Pollution Research, 15(2), 120–127.

    Article  CAS  Google Scholar 

  • Caoa, X., Ma, L. Q., Chen, M., Hardison, D. W., Jr., & Harrisa, W. G. (2003). Weathering of lead bullets and their environmental effects at outdoor shooting ranges. Journal of Environmental Quality, 32, 526–534.

    Google Scholar 

  • CCME. (2007). Recommandations canadiennes pour la qualité des sols: environnement et santé humaine. Winnipeg: Conseil Canadien des Ministres de l’Environnement.

    Google Scholar 

  • Chimenos, J. M., Fernandez, A. I., Cervantes, A., Miralles, L., Fernandez, M. A., & Espiell, F. (2005). Optimizing the APC residue washing process to minimize the release of chloride and heavy metals. Waste Management, 25(7), 686–693.

    Article  CAS  Google Scholar 

  • Clausen, J., & Korte, N. (2009). The distribution of metals in soils and pore water at three U.S. military training facilities. Soil and Sediment Contamination, 18(5), 546–563.

    Article  CAS  Google Scholar 

  • Conesa, H. M., Wieser, M., Gasser, M., Hockmann, K., Evangelou, M. W. H., Studer, B., & Schulin, R. (2010). Effects of three amendments on extractability and fractionation of Pb, Cu, Ni and Sb in two shooting range soils. Journal of Hazardous Materials, 181, 845–850.

    Article  CAS  Google Scholar 

  • Darling, C. T. R., & Thomas, V. G. (2003). The distribution of outdoor shooting ranges in Ontario and the potential for lead pollution of soil and water. Science of the Total Environment, 313(1–3), 235–243.

    Article  CAS  Google Scholar 

  • Dermatas, D., Cao, X., Tsaneva, V., Shen, G., & Grubb, D. G. (2006). Fate and behaviour of metal(loid) contaminants in an organic matter-rich shooting range soil: Implications for remediation. Water Air & Soil Pollution Focus, 6, 143–155.

    Article  CAS  Google Scholar 

  • Dermont, G., Bergeron, M., Mercier, G., & Richer-Lafleche, M. (2008). Soil washing for metal removal: a review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152(1), 1–31.

    Article  CAS  Google Scholar 

  • DiPalma, L., Ferrantelli, P., & Medici, F. (2005). Heavy metals extraction from contaminated soil: recovery of the flushing solution. Journal of Environmental Management, 77(3), 205–211.

    Article  CAS  Google Scholar 

  • Djedidi, Z., Bouda, M., Souissi, M. A., Ben Cheikh, R., Mercier, G., Tyagi, R. D., & Blais, J. F. (2009). Metals removal from soil, fly ash and sewage sludge leachates by precipitation and dewatering properties of the generated sludge. Journal of Hazardous Materials, 172, 1372–1382.

    Article  CAS  Google Scholar 

  • Djedidi, Z., Drogui, P., Ben Cheikh, R., Mercier, G., & Blais, J. F. (2005). Lead removal from soil using a saline leaching treatment and an electrolytic recovery process. Journal of Environmental Engineering, 131(2), 305–314.

    Article  CAS  Google Scholar 

  • Drogui, P., Meunier, N., Mercier, G., & Blais, J. F. (2011). Removal of Pb and Zn ions from acidic soil leachate: a comparative study between electrocoagulation, adsorption, and chemical precipitation processes. International Journal of Environment and Waste Management, 8(3/4), 241–257.

    Article  CAS  Google Scholar 

  • Filella, M., Belzile, N., & Chen, Y. W. (2002). Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry. Earth-Science Review, 59, 265–285.

    Article  CAS  Google Scholar 

  • Fuentes, E., Pinochet, H., De Gregori, I., & Potin-Gautier, M. (2003). Redox speciation analysis of antimony in soil extracts by hydride generation atomic fluorescence spectrometry. Spectrochimica Acta Part B, 58, 1279–1289.

    Article  Google Scholar 

  • Gebel, T. (1997). Arsenic and antimony: comparative approach on mechanistic toxicology. Chemico-Biological Interactions, 107, 131–144.

    Article  CAS  Google Scholar 

  • Janin, A., Blais, J. F., Mercier, G., & Drogui, P. (2009a). Optimization of a chemical leaching process for decontamination of CCA-treated wood. Journal of Hazardous Materials, 169, 136–145.

    Article  CAS  Google Scholar 

  • Janin, A., Blais, J. F., Mercier, G., & Drogui, P. (2009b). Selective recovery of metals in leachate from chromated copper arsenate treated wood using ion exchange resins and chemical precipitation. Journal of Hazardous Materials, 169, 1099–1105.

    Article  CAS  Google Scholar 

  • Johnson, C. A., Moench, H., Wersin, P., Kugler, P., & Wenger, C. (2005). Solubility of antimony and other elements in samples taken from shooting ranges. Journal of Environmental Quality, 34(1), 248–254.

    CAS  Google Scholar 

  • Laporte-Saumure, M., Martel, R., & Mercier, G. (2010). Evaluation of physic-chemical methods for treatment of Cu, Pb, Sb, and Zn in Canadian small arm firing ranges backstop soils. Water, Air, and Soil Pollution, 213(1–4), 171–189.

    Article  CAS  Google Scholar 

  • Laporte-Saumure, M., Martel, R., & Mercier, G. (2011). Characterization and metal availability of copper, lead, antimony and zinc contamination at four Canadian small arm firing ranges. Environmental Technology, 32(7), 767–781.

    Article  CAS  Google Scholar 

  • Levasseur, B., Chartier, M., Blais, J. F., & Mercier, G. (2006). Metals removal from municipal waste incinerator fly ashes and reuse of treated leachates. Journal of Environmental Engineering, 132(5), 497–505.

    Article  CAS  Google Scholar 

  • Marino, M. A., Brica, R. M., & Neale, C. N. (1997). Heavy metal soil remediation; the effects of attrition scrubbing on a wet gravity concentration process. Environmental Progress, 16(3), 208–214.

    Article  CAS  Google Scholar 

  • MDDEP. (1999). Politique de protection des sols et de réhabilitation des terrains contaminés (p. 132). Québec: Ministère du développement durable, de l’environnement et des parcs, Gouvernement du Québec.

    Google Scholar 

  • Mercier, G., Duchesne, J., & Blackburn, D. (2001). Prediction of metal removal efficiency from contaminated soils by physical methods. Journal of Environmental Engineering, 127(4), 348–358.

    Article  CAS  Google Scholar 

  • Mercier, G., Duchesne, J., & Carles-Gibergues, A. (2002a). A simple and fast screening test to detect soils polluted by lead. Environmental Pollution, 118, 285–296.

    Article  CAS  Google Scholar 

  • Mercier, G., Duchesne, J., & Blackburn, D. (2002b). Removal of metals from contaminated soils by mineral processing techniques followed by chemical leaching. Water, Air, and Soil Pollution, 135(1–4), 105–130.

    Article  CAS  Google Scholar 

  • Meunier, N., Blais, J. F., & Tyagi, R. D. (2004). Removal of heavy metals from acid soil leachate using cocoa shells in a counter-current sorption process. Hydrometallurgy, 73(3/4), 225–235.

    Article  CAS  Google Scholar 

  • Meunier, N., Drogui, P., Mercier, G., & Blais, J. F. (2009). Treatment of metal-loaded soil leachates by electrocoagulation. Separation and Purification Technology, 67(1), 110–116.

    Article  CAS  Google Scholar 

  • Moral, R., Gilkes, R. J., & Moreno-Caselles, J. (2002). A comparison of extractants for heavy metals in contaminated soils from Spain. Communications in Soil Science and Plant Analysis, 33(15–18), 2781–2791.

    Article  CAS  Google Scholar 

  • Mouton, J., Mercier, G., Drogui, P., & Blais, J. F. (2009). Experimental assessment of an innovative process for simultaneous PAHs and Pb removal from polluted soils. Science of the Total Environment, 407, 5402–5410.

    Article  CAS  Google Scholar 

  • Nedwed, T., & Clifford, D. A. (2000). Feasibility of extracting lead from lead battery recycling site soil using high-concentration chloride solutions. Environmental Progress, 19, 197–206.

    Article  CAS  Google Scholar 

  • Ortega, L. M., Lebrun, R., Blais, J. F., & Hausler, R. (2008). Removal of metal ions from an acidic leachate solution by nanofiltration membranes. Desalination, 227(1–3), 204–216.

    Article  CAS  Google Scholar 

  • Reddy, K. R., & Chinthamreddy, S. (2000). Comparison of extractants for removing heavy metals from contaminated clayey soils. Soil and Sediment Contamination, 9(5), 449–462.

    Article  CAS  Google Scholar 

  • Reid, S., & Cohen, S. Z. (2000). A new tool to predict lead mobility in shooting range soils: predicting SPLP results. In The 16th Annual International Conference on Contaminated Soils, Sediments and Water, Association for the Environmental Health and Sciences, USA, 16–19 October

  • Rikers, R. A., Rem, P., Dalmijn, W. L., & Honders, A. (1998). Characterization of heavy metals in soil by high gradient magnetic separator. Journal of Soil Contamination, 7(2), 163–190.

    Article  CAS  Google Scholar 

  • Scheinost, A. C., Rossberg, A., Vantelon, D., Xifra, I., Kretzschmar, R., Leuz, A. K., Funke, H., & Johnson, C. A. (2006). Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 70, 3299–3312.

    Article  CAS  Google Scholar 

  • Sorvari, J., Antikainen, R., & Pyy, O. (2006). Environmental contamination at Finnish shooting ranges—the scope of the problem and management options. Science of the Total Environment, 366(1), 21–31.

    Article  CAS  Google Scholar 

  • Spuller, C., Weigand, H., & Marb, C. (2007). Trace metal stabilisation in a shooting range soil: mobility and phytotoxicity. Journal of Hazardous Materials, 141(2), 378–387.

    Article  CAS  Google Scholar 

  • Takaoka, M., Fukutani, S., Yamamoto, T., Horiuchi, M., Satta, N., Takeda, N., Oshita, K., Yoneda, M., Morisawa, S., & Tanaka, T. (2005). Determination of chemical form of antimony in contaminated soil around a smelter using X-ray absorption fine structure. Analytical Science, 21, 769–773.

    Article  CAS  Google Scholar 

  • USEPA. (2002a). Synthetic precipitation leaching procedure, method 1312. Available at: www.EPA.gov/SW-846/1312.

  • USEPA. (2002b). Toxicity characteristic leaching procedure, method 1311. Available at: www.EPA.gov/SW-846/1311.pdf.

  • USEPA. (2004). Treatment technologies for site clean-up: annual status report (p. 50). Cincinnati: United States Environmental Protection Agency. EPA-542-R-03-009.

    Google Scholar 

  • Van Benschoten, J. E., Matsumoto, M. R., & Young, W. H. (1997). Evaluation and analysis of soil washing for seven lead-contaminated soils. Journal of Environmental Engineering, 123(3), 217–224.

    Article  Google Scholar 

  • Van Deuren, J., Lloyd, T., Chhetry, S., Liou, R., & Peck, J. (2002). Remediation technologies screening matrix and reference guide—version 4.0. U.S. Department of Defense, U.S. Army Environmental Center. Available at: http://www.frtr.gov/matrix2/section4/4-19.html.

  • Wills, B. A. (1988). Mineral processing technology. New York: Pergamon Press.

    Google Scholar 

  • Yu, Z., Feng, Q., Ou, L., Lu, Y., & Zhang, G. (2007). Selective leaching of a high-iron cobalt matte at atmospheric pressure. Separation and Purification Technology, 53, 1–7.

    Article  CAS  Google Scholar 

  • Zakharov, M. K. (2005). Minimal extractant flow rate in countercurrent leaching. Theoretical Foundations of Chemical Engineering, 39(3), 325–328.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sincere thanks are due to the Natural Sciences and Engineering Research Council of Canada, Canada Research Chairs for their financial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Blais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafond, S., Blais, JF., Martel, R. et al. Chemical Leaching of Antimony and Other Metals from Small Arms Shooting Range Soil. Water Air Soil Pollut 224, 1371 (2013). https://doi.org/10.1007/s11270-012-1371-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1371-6

Keywords

Navigation