Water, Air, & Soil Pollution

, Volume 223, Issue 9, pp 6133–6155 | Cite as

Removal of Anionic Pollutants from Waters and Wastewaters and Materials Perspective for Their Selective Sorption

  • Patrícia F. Lito
  • José P. S. Aniceto
  • Carlos M. SilvaEmail author


The presence of some anionic species, such as nitrate, nitrite, chloride, sulfide, fluoride, and cyanide, in water supplies may represent a serious environmental problem. In this work, the main sources and harmful effects of their bioaccumulation on living organisms are reviewed, as well as the most adopted technologies for their uptake. The major advantages and disadvantages of each methodology are also listed. In general, ion-exchange has been elucidated as the most suitable removal process. In view of that the most promising materials used to remove anionic pollutants from aqueous solutions are highlighted in this review. In particular, the major efforts towards the development of low-cost and easily available effective sorbents for water decontamination are covered. For instance, natural waste solid materials and derivatives have emerged as promising low-cost exchangers for selective anions uptake. Besides, a number of structural modifications including the introduction of more suitable surface functional groups or compensation species into the sorbent matrix have been investigated in order to enhance sorbents selectivity and capacity for anionic pollutants. The influence of speciation and removal conditions is also focused.


Anion Ion-exchange Pollutants Sorbent Water treatment 



Activated carbon


Concentration in solution


Initial concentration in solution


European Drinking Water Directive


Fe(III)-loaded ligand exchange cotton cellulose adsorbent


Granular red mud


Layered double hydroxides


Mixed metal oxide






Total anodic compartment


World Health Organization


Dimensionless concentration in solution


Dimensionless concentration in the solid phase



Patrícia F. Lito wishes to thank grant provided by Fundação para a Ciência e Tecnologia (SFRH/BPD/63214/2009; Portugal). José P.S. Aniceto would like to acknowledge the funding from the European Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement No. CP-IP 228589-2 AFORE. Authors thank Pest-C/CTM/LA0011/2011 for CICECO funding. The authors thank Simão P. Cardoso for figures support.


  1. Afkhami, A., Madrakian, T., & Karimi, Z. (2007). The effect of acid treatment of carbon cloth on the adsorption of nitrite and nitrate ions. Journal of Hazardous Materials, 144(1–2), 427–431.CrossRefGoogle Scholar
  2. Arora, M., Eddy, N. K., Mumford, K. A., Baba, Y., Perera, J. M., & Stevens, G. W. (2010). Surface modification of natural zeolite by chitosan and its use for nitrate removal in cold regions. Cold Regions Science and Technology, 62(2–3), 92–97.CrossRefGoogle Scholar
  3. Ateya, B. G., AlKharafi, F. M., & Al-Azab, A. S. (2003). Electrodeposition of sulfur from sulfide contaminated brines. Electrochemical and Solid-State Letters, 6(9), C137–C140.CrossRefGoogle Scholar
  4. Behnamfard, A., & Salarirad, M. M. (2009). Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon. Journal of Hazardous Materials, 170, 127–133.CrossRefGoogle Scholar
  5. Berbar, Y., Amara, M., & Kerdjoudj, H. (2008). Anion exchange resin applied to a separation between nitrate and chloride ions in the presence of aqueous soluble polyelectrolyte. Desalination, 223, 238–242.CrossRefGoogle Scholar
  6. Bhakat, P. B., Gupta, A. K., & Ayoob, S. (2007). Feasibility analysis of As(III) removal in a continuous flow fixed bed system by modified calcined bauxite (MCB). Journal of Hazardous Materials, 139(2), 286–292.CrossRefGoogle Scholar
  7. Bhatnagar, A., Ji, M., Choi, Y. H., Jung, W., Lee, S. H., Kim, S. J., et al. (2008). Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon. Separation Science and Technology, 43(4), 886–907.CrossRefGoogle Scholar
  8. Biçak, N., & Filiz Şenkal, B. (1998). Removal of nitrite ions from aqueous solutions by cross-linked polymer of ethylenediamine with epichlorohydrin. Reactive and Functional Polymers, 36(1), 71–77.CrossRefGoogle Scholar
  9. Biswas, K., Gupta, K., Goswami, A., & Ghosh, U. C. (2010). Fluoride removal efficiency from aqueous solution by synthetic iron(III)-aluminum (III)-chromium(III) ternary mixed oxide. Desalination, 255, 44–51.CrossRefGoogle Scholar
  10. Bogoczek, R., Kociolek-Balawejder, E., & Stanislawska, E. (2006). A macromolecular oxidant, the N,N-dichlorosulfonamide for removal of residual nitrites from aqueous media. Reactive and Functional Polymers, 66(6), 609–617.CrossRefGoogle Scholar
  11. Bulusu, K. R., & Nawlakhe, W. G. (1988). Defluoridation of water with activated alumina: batch operations. Indian Journal of Environmental Health, 30(3), 262–299.Google Scholar
  12. Camel, V. (2003). Solid phase extraction of trace elements. Spectrochimica Acta: Part B Atomic Spectroscopy, 58(7), 1177–1233.CrossRefGoogle Scholar
  13. Carmona, M., Perez, A., de Lucas, A., Rodriguez, L., & Rodriguez, J. F. (2008). Removal of chloride ions from an industrial polyethylenimine flocculant shifting it into an adhesive promoter using the anion exchange resin Amberlite IRA-420. Reactive and Functional Polymers, 68, 1218–1224.CrossRefGoogle Scholar
  14. Chabani, M., & Bensmaili, A. (2005). Kinetic modelling of the retention of nitrates by Amberlite IRA 410. Desalination, 185(1–3), 509–515.CrossRefGoogle Scholar
  15. Chabani, M., Amrane, A., & Bensmaili, A. (2006). Kinetic modelling of the adsorption of nitrates by ion exchange resin. Chemical Engineering Journal, 125, 111–117.CrossRefGoogle Scholar
  16. Chanda, M., & Rempel, G. L. (1995). Sorption of sulfide on a macroporous, quaternized poly(4-vinyl pyridine) in alkaline medium. Reactive Polymers, 24, 203–212.CrossRefGoogle Scholar
  17. Chatterjee, S., & Woo, S. H. (2009). The removal of nitrate from aqueous solutions by chitosan hydrogel beads. Journal of Hazardous Materials, 164(2–3), 1012–1018.CrossRefGoogle Scholar
  18. Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38(1), 11–41.CrossRefGoogle Scholar
  19. Cheng, I. F., Muftikian, R., Fernando, Q., & Korte, N. (1997). Reduction of nitrate to ammonia by zero-valent iron. Chemosphere, 35(11), 2689–2695.CrossRefGoogle Scholar
  20. Cheng, X. W., Zhong, Y., Wang, J., Guo, J., Huang, Q., & Long, Y. C. (2005). Studies on modification and structural ultra-stabilization of natural STI zeolite. Microporous and Mesoporous Materials, 83(1–3), 233–243.CrossRefGoogle Scholar
  21. Cumbal, L., Greenleaf, J., Leun, D., & SenGupta, A. K. (2003). Polymer supported inorganic nanoparticles: characterization and environmental applications. Reactive and Functional Polymers, 54(1–3), 167–180.CrossRefGoogle Scholar
  22. Dabrowski, A., Hubicki, Z., Podkoscielny, P., & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56(2), 91–106.CrossRefGoogle Scholar
  23. Dai, X., & Breuer, P. L. (2009). Cyanide and copper cyanide recovery by activated carbon. Minerals Engineering, 22, 469–476.CrossRefGoogle Scholar
  24. Daifullah, A. A. M., Yakout, S. M., & Elreefy, S. A. (2007). Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. Journal of Hazardous Materials, 147, 633–643.CrossRefGoogle Scholar
  25. Das, D. P., Das, J., & Parida, K. (2003). Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution. Journal of Colloid and Interface Science, 261(2), 213–220.CrossRefGoogle Scholar
  26. Das, N., Pattanaik, P., & Das, R. (2005). Defluoridation of drinking water using activated titanium rich bauxite. Journal of Colloid and Interface Science, 292(1), 1–10.CrossRefGoogle Scholar
  27. Dash, R. R., Gaur, A., & Balomajumder, C. (2009). Review cyanide in industrial wastewaters and its removal: a review on biotreatment. Journal of Hazardous Materials, 163, 1–11.CrossRefGoogle Scholar
  28. de Heredia, J. B., Dominguez, J. R., Cano, Y., & Jimenez, I. (2006). Nitrate removal from groundwater using Amberlite IRN-78: Modelling the system. Applied Surface Science, 252, 6031–6035.CrossRefGoogle Scholar
  29. Deganello, F., Liotta, L. F., Macaluso, A., Venezia, A. M., & Deganello, G. (2000). Catalytic reduction of nitrates and nitrites in water solution on pumice-supported Pd–Cu catalysts. Applied Catalysis B: Environmental, 24(3–4), 265–273.CrossRefGoogle Scholar
  30. DeMarco, M. J., SenGupta, A. K., & Greenleaf, J. E. (2003). Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Research, 37(1), 164–176.CrossRefGoogle Scholar
  31. Deveci, H., Yazıcı, E. Y., Alp, I., & Uslu, T. (2006). Removal of cyanide from aqueous solutions by plain and metal-impregnated granular activated carbons. International Journal of Mineral Processing, 79, 198–208.CrossRefGoogle Scholar
  32. Dubey, S. K., & Holmes, D. S. (1995). Biological cyanide destruction mediated by microorganisms. World Journal of Microbiology and Biotechnology, 11(3), 257–265.CrossRefGoogle Scholar
  33. Durmaz, F., Kara, H., Cengeloglu, Y., & Ersoz, M. (2005). Fluoride removal by Donnan dialysis with anion exchange membranes. Desalination, 177(1–3), 51–57.CrossRefGoogle Scholar
  34. Dutta, P. K., Rabaey, K., Yuan, Z., & Keller, J. (2008). Spontaneous electrochemical removal of aqueous sulfide. Water Research, 42(20), 4965–4975.CrossRefGoogle Scholar
  35. Dutta, P. K., Rabaey, K., Yuan, Z., Rozendal, R. A., & Keller, J. (2010). Electrochemical sulfide removal and recovery from paper mill anaerobic treatment effluent. Water Research, 44, 2563–2571.CrossRefGoogle Scholar
  36. Erdem, M., Altundogan, H. S., & Tumen, F. (2004). Removal of hexavalent chromium by using heat-activated bauxite. Minerals Engineering, 17(9–10), 1045–1052.CrossRefGoogle Scholar
  37. Ettouney, H. M., El-Dessouky, H. T., Faibish, R. S., & Gowin, P. J. (2002). Evaluating the economics of desalination. Chemical Engineering Progress, 98(12), 32–39.Google Scholar
  38. Fan, X., Parker, D. J., & Smith, M. D. (2003). Adsorption kinetics of fluoride on low cost materials. Water Research, 37, 4929–4937.CrossRefGoogle Scholar
  39. Ganczarczyk, J. J., Takoaka, P. T., & Ohashi, D. A. (1985). Application of polysulfide for pretreatment of spent cyanide liquors. Journal of the Water Pollution Control Federation, 57(11), 1089–1093.Google Scholar
  40. Gao, W., Chen, J., Guan, X., Jin, R., Zhang, F., & Guan, N. (2004). Catalytic reduction of nitrite ions in drinking water over Pd–Cu/TiO2 bimetallic catalyst. Catalysis Today, 93–95, 333–339.CrossRefGoogle Scholar
  41. Gao, B.-Y., Xu, X., Wang, Y., Yue, Q.-Y., & Xu, X.-M. (2009). Preparation and characteristics of quaternary amino anion exchanger from wheat residue. Journal of Hazardous Materials, 165(1–3), 461–468.CrossRefGoogle Scholar
  42. Gärtner, R. S., & Witkamp, G. J. (2005). Regeneration of mixed solvent by ion exchange resin: selective removal of chloride and sulfate. Separation Science and Technology, 40(12), 2391–2410.CrossRefGoogle Scholar
  43. Gärtner, R. S., Wilhelm, F. G., Witkamp, G. J., & Wessling, M. (2005). Regeneration of mixed solvent by electrodialysis: selective removal of chloride and sulfate. Journal of Membrane Science, 250, 113–133.CrossRefGoogle Scholar
  44. Guan, H. D., Bestland, E., Zhu, C. Y., Zhu, H. L., Albertsdottir, D., Hutson, J., et al. (2010). Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites. Journal of Hazardous Materials, 183(1–3), 616–621.CrossRefGoogle Scholar
  45. Guo, Z., Zheng, Z., Gu, C., & Zheng, Y. (2008). Gamma irradiation-induced removal of low-concentration nitrite in aqueous solution. Radiation Physics and Chemistry, 77(6), 702–707.CrossRefGoogle Scholar
  46. Hichour, M., Persin, F., Sandeaux, J., & Gavach, C. (2000). Fluoride removal from waters by Donnan dialysis. Separation and Purification Technology, 18, 1–11.CrossRefGoogle Scholar
  47. Honn, K. V., & Chavin, W. (1976). Utility of ozone treatment in the maintenance of water quality in a closed marine system. Marine Biology, 34(3), 201–209.CrossRefGoogle Scholar
  48. Hradil, J., Králová, E., & Benes, M. J. (1997). Methacrylate anion exchangers with enhanced affinity for nitrates. Reactive and Functional Polymers, 33, 263–273.CrossRefGoogle Scholar
  49. Hu, H.-Y., Goto, N., & Fujie, K. (2001). Effect of ph on the reduction of nitrite in water by metallic iron. Water Research, 35(11), 2789–2793.CrossRefGoogle Scholar
  50. Islam, M., & Patel, R. (2010). Synthesis and physicochemical characterization of Zn/Al chloride layered double hydroxide and evaluation of its nitrate removal efficiency. Desalination, 256, 120–128.CrossRefGoogle Scholar
  51. Kabay, N., Arar, O., Samatya, S., Yuksel, U., & Yuksel, M. (2008). Separation of fluoride from aqueous solution by electrodialysis: effect of process parameters and other ionic species. Journal of Hazardous Materials, 153(1–2), 107–113.CrossRefGoogle Scholar
  52. Kagne, S., Jagtap, S., Dhawade, P., Kamble, S. P., Devotta, S., & Rayalu, S. S. (2008). Hydrated cement: a promising adsorbent for the removal of fluoride from aqueous solution. Journal of Hazardous Materials, 154, 88–95.CrossRefGoogle Scholar
  53. Kameda, T., Miyano, Y., Yoshioka, T., Uchida, M., & Okuwaki, A. (2000). New treatment methods for waste water containing chloride ion using magnesium-aluminum oxide. Chemistry Letters, 10, 1136–1137.CrossRefGoogle Scholar
  54. Kameda, T., Yabuuchi, F., Yoshioka, T., Uchida, M., & Okuwaki, A. (2003a). New method of treating dilute mineral acids using magnesium-aluminum oxide. Water Research, 37(7), 1545–1550.CrossRefGoogle Scholar
  55. Kameda, T., Yoshioka, T., Mitsuhashi, T., Uchida, M., & Okuwaki, A. (2003b). The simultaneous removal of calcium and chloride ions from calcium chloride solution using magnesium–aluminum oxide. Water Research, 37, 4045–4050.CrossRefGoogle Scholar
  56. Kenfield, C. F., Qin, R., Semmens, M. J., & Cussler, E. L. (1988). Cyanide recovery across hollow fiber gas membranes. Environmental Science and Technology, 22(10), 1151–1155.CrossRefGoogle Scholar
  57. Khani, A., & Mirzaei, M. (2008). Comparative study of nitrate removal from aquous solution using powder activated carbon and carbon nanotubes. Paper presented at the 2nd International IUPAC Conference in Green Chemistry.Google Scholar
  58. Kim, J., & Benjamin, M. M. (2004). Modeling a novel ion exchange process for arsenic and nitrate removal. Water Research, 38, 2053–2062.CrossRefGoogle Scholar
  59. Kim, Y., Kim, C., Choi, I., Rengaraj, S., & Yi, J. (2004). Arsenic removal using mesoporous alumina prepared via a templating method. Environmental Science and Technology, 38(3), 924–931.CrossRefGoogle Scholar
  60. Krüner, G., & Rosenthal, H. (1983). Efficiency of nitrification in trickling filters using different substrates. Aquacultural Engineering, 2(1), 49–67.CrossRefGoogle Scholar
  61. Lahnid, S., Tahaikt, M., Elaroui, K., Idrissi, I., Hafsi, M., Laaziz, I., et al. (2008). Economic evaluation of fluoride removal by electrodialysis. Desalination, 230(1–3), 213–219.CrossRefGoogle Scholar
  62. Lehman, S. G., Badruzzaman, M., Adham, S., Roberts, D., & Clifford, D. A. (2008). Perchlorate and nitrate treatment by ion exchange integrated with biological brine treatment. Water Research, 42, 969–976.CrossRefGoogle Scholar
  63. Li, J., Qiu, J., Sun, Y. J., & Long, Y. C. (2000). Studies on natural STI zeolite: modification, structure, adsorption and catalysis. Microporous and Mesoporous Materials, 37(3), 365–378.CrossRefGoogle Scholar
  64. Lin, S. H., & Wu, C. L. (1996). Removal of nitrogenous compounds from aqueous solution by ozonation and ion exchange. Water Research, 30(8), 1851–1857.CrossRefGoogle Scholar
  65. Lopes, C. B., Lito, P. F., Cardoso, S. P., Pereira, E., Duarte, A. C., & Silva, C. M. (2012). Metal recovery, separation and/or concentration. In S. Inamuddin & M. Luqman (Eds.), Ion-exchange technology: theory, materials and applications. Berlin: Springer.Google Scholar
  66. Lüdtke, K., Peinemann, K. V., Kasche, V., & Behling, R. D. (1998). Nitrate removal of drinking water by means of catalytically active membranes. Journal of Membrane Science, 151(1), 3–11.CrossRefGoogle Scholar
  67. Lv, L., He, J., Wei, M., Evans, D. G., & Duan, X. (2006a). Factors influencing the removal of fluoride from aqueous solution by calcined Mg–Al–CO3 layered double hydroxides. Journal of Hazardous Materials B, 133, 119–128.CrossRefGoogle Scholar
  68. Lv, L., He, J., Wei, M., Evans, D. G., & Duan, X. (2006b). Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: equilibrium and kinetic studies. Water Research, 40, 735–743.CrossRefGoogle Scholar
  69. Lv, L., Sun, P., Gu, Z., Du, H., Pang, X., Tao, X., et al. (2009). Removal of chloride ion from aqueous solution by ZnAl–NO3 layered double hydroxides as anion-exchanger. Journal of Hazardous Materials, 161, 1444–1449.CrossRefGoogle Scholar
  70. Ma, J., & Dasgupta, P. K. (2010). Recent developments in cyanide detection: a review. Analytica Chimica Acta, 673, 117–125.CrossRefGoogle Scholar
  71. Mandal, S., & Mayadevi, S. (2008). Cellulose supported layered double hydroxides for the adsorption of fluoride from aqueous solution. Chemosphere, 72(6), 995–998.CrossRefGoogle Scholar
  72. Meenakshi, S., & Viswanathan, N. (2007). Identification of selective ion-exchange resin for fluoride sorption. Journal of Colloid and Interface Science, 308, 438–450.CrossRefGoogle Scholar
  73. Mena-Duran, C. J., Kou, M. R. S., Lopez, T., Azamar-Barrios, J. A., Aguilar, D. H., Dominguez, M. I., et al. (2007). Nitrate removal using natural clays modified by acid thermoactivation. Applied Surface Science, 253(13), 5762–5766.CrossRefGoogle Scholar
  74. Mohapatra, M., Anand, S., Mishra, B. K., Giles, D. E., & Singh, P. (2009). Review of fluoride removal from drinking water. Journal of Environmental Management, 91(1), 67–77.CrossRefGoogle Scholar
  75. Namasivayam, C., & Sangeetha, D. (2005). Removal and recovery of nitrate from water by ZnCl2 activated carbon from coconut coir pith, an agricultural solid waste. Indian Journal of Chemical Technology, 12(5), 513–521.Google Scholar
  76. Ndiayea, P. I., Moulin, P., Dominguez, L., Millet, J. C., & Charbit, F. (2005). Removal of fluoride from electronic industrial effluent by RO membrane separation. Desalination, 173(1), 25–32.CrossRefGoogle Scholar
  77. Oh, T.-K., & Chikushi, J. (2010). Fluoride adsorption on water treatment sludge processed by polyaluminium chloride. Journal of Food, Agriculture & Environment, 8(1), 358–362.Google Scholar
  78. Onyango, M. S., Kojima, Y., Aoyi, O., Bernardo, E. C., & Matsuda, H. (2004). Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. Journal of Colloid and Interface Science, 279(2), 341–350.CrossRefGoogle Scholar
  79. Onyango, M. S., Kojima, Y., Kuchar, D., Osembo, S. O., & Matsuda, H. (2005). Diffusion kinetic modeling of fluoride removal from aqueous solution by charge-reversed zeolite particles. Journal of Chemical Engineering of Japan, 38(9), 701–710.CrossRefGoogle Scholar
  80. Onyango, M. S., Kojima, Y., Kumar, A., Kuchar, D., Kubota, M., & Matsuda, H. (2006). Uptake of fluoride by Al3 + pretreated low–silica synthetic zeolites: adsorption equilibrium and rate studies. Separation Science and Technology, 41(4), 683–704.CrossRefGoogle Scholar
  81. Orlando, U. S., Baes, A. U., Nishijima, W., & Okada, M. (2002). A new procedure to produce lignocellulosic anion exchangers from agricultural waste materials. Bioresource Technology, 83, 195–198.CrossRefGoogle Scholar
  82. Orlando, U. S., Okuda, T., Baes, A. U., Nishijima, W., & Okada, M. (2003). Chemical properties of anion-exchangers prepared from waste natural materials. Reactive and Functional Polymers, 55(3), 311–318.CrossRefGoogle Scholar
  83. Osathaphan, K., Boonpitak, T., Laopirojana, T., & Sharma, V. K. (2008). Removal of cyanide and zinc-cyanide complex by an ion-exchange process. Water, Air, and Soil Pollution, 194, 179–183.CrossRefGoogle Scholar
  84. Öztürk, N., & Köse, T. E. (2008). A kinetic study of nitrite adsorption onto sepiolite and powdered activated carbon. Desalination, 223, 174–179.CrossRefGoogle Scholar
  85. Panswad, T., & Anan, C. (1999). Impact of high chloride wastewater on an anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds. Water Research, 33(5), 1165–1172.CrossRefGoogle Scholar
  86. Parrish, J. R. (1977). Macroporous resins as supports for a chelating liquid ion-exchanger in extraction chromatography. Analytical Chemistry, 49(8), 1189–1192.CrossRefGoogle Scholar
  87. Pikaar, I., Rozendal, R. A., Yuan, Z., Keller, J., & Rabaey, K. (2011a). Electrochemical sulfide oxidation from domestic wastewater using mixed metal-coated titanium electrodes. Water Research, 45(45), 5381–5388.CrossRefGoogle Scholar
  88. Pikaar, I., Rozendal, R. A., Yuan, Z., Keller, J., & Rabaey, K. (2011b). Electrochemical sulfide removal from synthetic and real domestic wastewater at high current densities. Water Research, 45, 2281–2289.CrossRefGoogle Scholar
  89. Pintar, A., & Batista, J. (2006). Improvement of an integrated ion-exchange/catalytic process for nitrate removal by introducing a two-stage denitrification step. Applied Catalysis B: Environmental, 63(1–2), 150–159.CrossRefGoogle Scholar
  90. Pintar, A., Batista, J., & Levec, J. (2001). Integrated ion exchange/catalytic process for efficient removal of nitrates from drinking water. Chemical Engineering Science, 56(4), 1551–1559.CrossRefGoogle Scholar
  91. Rabaey, K., Van de Sompel, K., Maignien, L., Boon, N., Aelterman, P., Clauwaert, P., et al. (2006). Microbial fuel cells for sulfide removal. Environmental Science and Technology, 40(17), 5218–5224.CrossRefGoogle Scholar
  92. Rajeshwar, K., Ibanez, J. G., & Swain, G. M. (1994). Electrochemistry and the environment. Journal of Applied Electrochemistry, 24(11), 1077–1091.CrossRefGoogle Scholar
  93. Reimers, C. E., Girguis, P., Stecher Iii, H. A., Tender, L. M., Ryckelynck, N., & Whaling, P. (2006). Microbial fuel cell energy from an ocean cold seep. Geobiology, 4(2), 123–136.CrossRefGoogle Scholar
  94. Rivas, B. L., & del Carmen Aguirre, M. (2007). Nitrite removal from water using water-soluble polymers in conjunction with liquid-phase polymer-based retention technique. Reactive and Functional Polymers, 67(12), 1487–1494.CrossRefGoogle Scholar
  95. Ruixia, L., Jinlong, G., & Hongxiao, T. (2002). Adsorption of fluoride, phosphate, and arsenate ions on a new type of ion exchange fiber. Journal of Colloid and Interface Science, 248, 268–274.CrossRefGoogle Scholar
  96. Samatya, S., Kabay, N., Yuksel, U., Arda, M., & Yuksel, M. (2006). Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. Reactive and Functional Polymers, 66, 1206–1214.CrossRefGoogle Scholar
  97. Samatya, S., Yuksel, U., Yuksel, M., & Kabay, N. (2007). Removal of fluoride from water by metal ions (Al3+, La3+ and ZrO2+) loaded natural zeolite. Separation Science and Technology, 42(9), 2033–2047.CrossRefGoogle Scholar
  98. Samatya, S., Mizuki, H., Ito, Y., Kawakita, H., & Uezu, K. (2010). The effect of polystyrene as a porogen on the fluoride ion adsorption of Zr(IV) surface-immobilized resin. Reactive and Functional Polymers, 70(1), 63–68.CrossRefGoogle Scholar
  99. Saremi, M., & Mahallati, E. (2002). A study on chloride-induced depassivation of mild steel in simulated concrete pore solution. Cement and Concrete Research, 32, 1915–1921.CrossRefGoogle Scholar
  100. Sarkar, S., & SenGupta, A. K. (2008). A new hybrid ion exchange-nanofiltration (HIX-NF) separation process for energy-efficient desalination: process concept and laboratory evaluation. Journal of Membrane Science, 324, 76–84.CrossRefGoogle Scholar
  101. Sivasankar, V., Ramachandramoorthy, T., & Chandramohan, A. (2010). Fluoride removal from water using activated and MnO2-coated tamarind fruit (tamarindus indica) shell: batch and column studies. Journal of Hazardous Materials, 177, 719–729.CrossRefGoogle Scholar
  102. Solangi, I. B., Memon, S., & Bhanger, M. I. (2010). An excellent fluoride sorption behavior of modified amberlite resin. Journal of Hazardous Materials, 176, 186–192.CrossRefGoogle Scholar
  103. Soldatov, V. S., Sokolova, V. I., Medyak, G. V., Shunkevich, A. A., & Akulich, Z. I. (2007). Binary ion exchange equilibria in systems containing NO, Cl and SO2 on fibrous anion exchangers with tetraalkylammomium groups. Reactive and Functional Polymers, 67, 1530–1539.CrossRefGoogle Scholar
  104. Spiegler, K. S., & El-Sayed, Y. M. (2001). The energetics of desalination processes. Desalination, 134(1–3), 109–128.CrossRefGoogle Scholar
  105. Strukul, G., Pinna, F., Marella, M., Meregalli, L., & Tomaselli, M. (1996). Sol–gel palladium catalysts for nitrate and nitrite removal from drinking water. Catalysis Today, 27(1–2), 209–214.CrossRefGoogle Scholar
  106. Sujana, M. G., & Anand, S. (2011). Fluoride removal studies from contaminated ground water by using bauxite. Desalination, 267(2–3).Google Scholar
  107. Sun, Y. B., Fang, Q. H., Dong, J. P., Cheng, X. W., & Xu, J. Q. (2011). Removal of fluoride from drinking water by natural stilbite zeolite modified with Fe(III). Desalination, 277(1–3), 121–127.CrossRefGoogle Scholar
  108. Suzuki, T., Akizawa, Y., Ono, N., Masuda, H., Shindo, T., Nagamachi, M., et al. (1991). The transfer of mofezolac into the inflammatory site and the hypothalamus in rats. Japanese Pharmacology and Therapeutics, 19(1), 33–40.Google Scholar
  109. Swain, S. K., Dey, R. K., Islam, M., Patel, R. K., Jha, U., Patnaik, T., et al. (2009). Removal of fluoride from aqueous solution using aluminum-impregnated chitosan biopolymer. Separation Science and Technology, 44, 2096–2116.CrossRefGoogle Scholar
  110. Tahaikt, M., El Habbania, R., Haddou, A. A., Acharya, I., Amora, Z., Takya, M., et al. (2007). Fluoride removal from groundwater by nanofiltration. Desalination, 212(1–3), 46–53.CrossRefGoogle Scholar
  111. Tahaikt, M., Haddou, A. A., El Habbani, R., Amor, Z., Elhannouni, F., Taky, M., et al. (2008). Comparison of the performances of three commercial membranes in fluoride removal by nanofiltration. Continuous operations. Desalination, 225(1–3), 209–219.CrossRefGoogle Scholar
  112. Tang, Y., Guan, X., Su, T., Gao, N., & Wang, J. (2009). Fluoride adsorption onto activated alumina: modeling the effects of pH and some competing ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 337, 33–38.CrossRefGoogle Scholar
  113. Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2003). Wastewater engineering: treatment and reuse. New York: McGraw-Hill.Google Scholar
  114. Tokunaga, S., Haron, M. J., Wasay, S. A., Wong, K. F., Laosangthum, K., & Uchiumi, A. (1995). Removal of fluoride ions from aqueous solutions by multivalent metal compounds. International Journal of Environmental Studies, 48(1 Sect.A), 17–28.CrossRefGoogle Scholar
  115. Tor, A., Danaoglu, N., Arslan, G., & Cengeloglu, Y. (2009). Removal of fluoride from water by using granular red mud: batch and column studies. Journal of Hazardous Materials, 164, 271–278.CrossRefGoogle Scholar
  116. Tsuji, M., & Abe, M. (1986). Possible radiochemical separations of anionic radionuclides by amorphous hydrous titanium dioxide. Journal of Radioanalytical and Nuclear Chemistry Articles, 102(2), 283–294.CrossRefGoogle Scholar
  117. Tsuji, M., & Abe, M. (1991). Selective uptake of toxic elements by an amorphous titanium dioxide ion exchanger. Journal of Radioanalytical and Nuclear Chemistry, 149(1), 109–118.CrossRefGoogle Scholar
  118. Vaiopoulou, E., Melidis, P., & Aivasidis, A. (2005). Sulfide removal in wastewater from petrochemical industries by autotrophic denitrification. Water Research, 39(17), 4101–4109.CrossRefGoogle Scholar
  119. Viswanathan, N., & Meenakshi, S. (2010). Enriched fluoride sorption using alumina/chitosan composite. Journal of Hazardous Materials, 178, 226–232.CrossRefGoogle Scholar
  120. Wajima, T., Umeta, Y., Narita, S., & Sugawara, K. (2009). Adsorption behavior of fluoride ions using a titanium hydroxide-derived adsorbent. Desalination, 249(1), 323–330.CrossRefGoogle Scholar
  121. Warshawsky, A. (1974). Polystyrene impregnated with β-diphenylglyoxime, a selective reagent for palladium. Talanta, 21(6), 624–626.CrossRefGoogle Scholar
  122. Wild, S. R., Rudd, T., & Neller, A. (1994). Fate and effects of cyanide during wastewater treatment processes. Science of the Total Environment, 156(2), 93–107.CrossRefGoogle Scholar
  123. Yang, H., & Cheng, H. (2007). Controlling nitrite level in drinking water by chlorination and chloramination. Separation and Purification Technology, 56(3), 392–396.CrossRefGoogle Scholar
  124. Zhang, Z., & Pinnavaia, T. J. (2002). Mesostructured γ-Al2O3 with a lathlike framework morphology. Journal of the American Chemical Society, 124(41), 12294–12301.CrossRefGoogle Scholar
  125. Zhang, L., De Schryver, P., De Gusseme, B., De Muynck, W., Boon, N., & Verstraete, W. (2008). Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Research, 42(1–2), 1–12.CrossRefGoogle Scholar
  126. Zhang, J., Xie, S., & Ho, Y.-S. (2009). Removal of fluoride ions from aqueous solution using modified attapulgite as adsorbent. Journal of Hazardous Materials, 165, 218–222.CrossRefGoogle Scholar
  127. Zhao, Y., Li, X., Liu, L., & Chen, F. (2008). Fluoride removal by Fe(III)-loaded ligand exchange cotton cellulose adsorbent from drinking water. Carbohydrate Polymers, 72, 144–150.CrossRefGoogle Scholar
  128. Zhu, P., Wang, H., Sun, B., Deng, P., Hou, S., & Yu, Y. (2009). Adsorption of fluoride from aqueous solution by magnesia-amended silicon dioxide granules. Journal of Chemical Technology and Biotechnology, 84, 1449–1455.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Patrícia F. Lito
    • 1
  • José P. S. Aniceto
    • 1
  • Carlos M. Silva
    • 1
    Email author
  1. 1.CICECO/Department of ChemistryUniversity of AveiroAveiroPortugal

Personalised recommendations