Skip to main content
Log in

Ecotoxicological Assessment of Contaminated River Sites as a Proxy for the Water Framework Directive: an Acid Mine Drainage Case Study

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Metal contamination of freshwater bodies resulting from mining activities or deactivated mines is a common problem worldwide such as in Portugal. Braçal (galena ore) and Palhal (pyrrhotite, chalcopyrite, galena, sphalerite, and pyrite ore), located in a riverside position, are both examples of deactivated mining areas lacking implemented recovery plans since their shutdown in the early mid-1900s. In both mining areas, effluents still flow into two rivers. The purpose of this work was to evaluate the potential hazard posed by the mining effluents to freshwater communities. Therefore, short- and long-term ecotoxicological tests were performed on elutriates from river sediments collected at each site using standard test organisms that cover different functional levels (Vibrio fischeri, Pseudokirchneriella subcapitata, Lemna minor, and Daphnia sp.). The results show that elutriates from the sediments of Palhal were very toxic to all tested species, while in contrast, elutriates from Braçal showed generally no toxicity for the tested species. Our study highlights the usefulness of using an ecotoxicological approach to help in the prioritization/scoring of the most critical areas impacted by deactivated mines. This ecotoxicological test battery can provide important information about the ecological status of each concerning site before investing in the application of time-consuming and costly methods defined by the Water Framework Directive or can stand as a meaningful complementary analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrantes, N., Pereira, R., & Gonçalves, F. (2006). First step for an ecological risk assessment to evaluate the impact of diffuse pollution in Lake Vela (Portugal). Environmental Monitoring and Assessment, 117(1), 411–431.

    Article  CAS  Google Scholar 

  • Abrantes, N., Pereira, R., de Figueiredo, D. R., Marques, C. R., Pereira, M. J., & Goncalves, F. (2009). A whole sample toxicity assessment to evaluate the sub-lethal toxicity of water and sediment elutriates from a lake exposed to diffuse pollution. Environmental Toxicology, 24(3), 259–270.

    Article  CAS  Google Scholar 

  • AE (1998). Microtox manual. Carlsbad, Azur Environmental.

  • Ankley, G. T., Schubauer Berigan, M. K., & Dierkes, J. R. (1991). Predicting the toxicity of bulk sediments to aquatic organisms with aqueous test fractions: pore water vs. elutriate. Environmental Toxicology and Chemistry, 10(10), 1359–1366.

    Article  CAS  Google Scholar 

  • Antunes, S. C., Castro, B. B., & Gonçalves, F. (2003). Chronic responses of different clones of Daphnia longispina (field and ephippia) to different food levels. Acta Oecologica, 24, S325–S332.

    Article  Google Scholar 

  • Antunes, S. C., Pereira, R., & Gonçalves, F. (2007). Evaluation of the potential toxicity (acute and chronic) of sediments from abandoned uranium mine ponds. Journal of Soils and Sediments, 7(6), 368–376.

    Article  CAS  Google Scholar 

  • Antunes, S. C., de Figueiredo, D. R., Marques, C., Castro, B. B., Pereira, R., & Gonçalves, F. (2007). Evaluation of water column and sediment toxicity from an abandoned mine using a battery of bioassay. The Science of the Total Environment, 374(2–3), 252–259.

    Article  CAS  Google Scholar 

  • APHA. (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington: American Public Health Association.

    Google Scholar 

  • ASTM (1980). Standard practice for conducting acute toxicity tests with fishes, macroinvertebrates and amphibians. (Vol. report E 729-80). Philadelphia: American Society for Testing and Materials.

  • Baird, D. J., Barber, I., Bradley, M. C., Calow, P., & Soares, A. M. V. M. (1989). The Daphnia bioassay: a critique. Hydrobiologia, 188(189), 403–406.

    Article  Google Scholar 

  • Baird, D. J., Soares, A. M. V. M., Girling, A., Barber, I., Bradley, M. C., & Calow, P. (1989b). The long-term maintenance of Daphnia magna Straus for use in ecotoxicity tests: problems and prospects. In Lokke, H., Tyle, H., Bro-Rasmussen, F. (Eds.), Proceedings of the First European Conference on Ecotoxicology, Lyngby, pp. 144–148.

  • Barata, C., Baird, D. J., & Markich, S. J. (1998). Influence of genetic and environmental factors on the tolerance of Daphnia magna Straus to essential and non-essential metals. Aquatic Toxicology, 42(2), 115–137.

    Article  CAS  Google Scholar 

  • Blinova, I. (2004). Use of freshwater algae and duckweeds for phytotoxicity testing. Environmental Toxicology, 19(4), 425–428.

    Article  CAS  Google Scholar 

  • Burton, J. G. A. (2002). Sediment quality criteria in use around the world. Limnology, 3(2), 65–76.

    Article  CAS  Google Scholar 

  • Campbell, P. G. C. (1995). Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. Metal Speciation and Bioavailability in Aquatic Systems, 3, 45–102.

    CAS  Google Scholar 

  • CCME - Canadian Council of Ministers of the Environment (2002). Canadian sediment quality guidelines for the protection of aquatic life: summary tables. Updated. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.

  • Chapman, P. M. (2000). Whole effluent toxicity testing—usefulness, level of protection, and risk assessment. Environmental Toxicology and Chemistry, 19(1), 3–13.

    CAS  Google Scholar 

  • Chovanec, A., Jäger, P., Jungwirth, M., Koller-Kreimel, V., Moog, O., & Muhar, S. (2000). The Austrian way of assessing the ecological integrity of running waters: a contribution to the EU Water Framework Directive. Hydrobiologia, 422–423, 445–452.

    Article  Google Scholar 

  • Declerck, S., De Meester, L., Podoor, N., & Conde-Porcuna, J. M. (1997). The relevance of size efficiency to biomanipulation theory: a field test under hypertrophic conditions. Hydrobiologia, 360(1), 265–275.

    Article  Google Scholar 

  • Dirilgen, N., & Inel, Y. (1994). Effects of zinc and copper on growth and metal accumulation in duckweed, Lemna minor. Bulletin of Environmental Contamination and Toxicology, 53(3), 442–449.

    Article  CAS  Google Scholar 

  • Fairchild, J., Ruessler, D., Haverland, P., & Carlson, A. (1997). Comparative sensitivity of Selenastrum capricornutum and Lemna minor to sixteen herbicides. Archives of Environmental Contamination and Toxicology, 32(4), 353–357.

    Article  CAS  Google Scholar 

  • Finney, D. (1971). Probit analysis 3rd ed. London: Cambridge University Press, p. 333.

  • Geis, S. W., Fleming, K. L., Korthals, E. T., Searle, G., Reynolds, L., & Karner, D. A. (2000). Modifications to the algal growth inhibition test for use as a regulatory assay. Environmental Toxicology and Chemistry, 19(1), 36–41.

    Article  CAS  Google Scholar 

  • Hanazato, T. (2001). Pesticide effects on freshwater zooplankton: an ecological perspective. Environmental Pollution, 112(1), 1–10.

    Article  CAS  Google Scholar 

  • Hass, A., & Fine, P. (2010). Sequential selective extraction procedures for the study of heavy metals in soils, sediments, and waste materials—a critical review. Critical Reviews in Environmental Science and Technology, 40(5), 365–399.

    Article  CAS  Google Scholar 

  • Hickey, C. W., & Golding, L. A. (2002). Response of macroinvertebrates to copper and zinc in a stream mesocosm. Environmental Toxicology and Chemistry, 21(9), 1854–1863.

    Article  CAS  Google Scholar 

  • Hickey, C. W., & Pyle, E. (2001). Derivation of water quality guideline values for heavy metals using risk-based methodology: an approach for New Zealand. Australasian Journal of Ecotoxicology, 7, 137–156.

    CAS  Google Scholar 

  • Huschek, G., & Hansen, P. D. (2006). Ecotoxicological classification of the Berlin River system using bioassays in respect to the European Water Framework Directive. Environmental Monitoring and Assessment, 121(1), 15–31.

    Article  CAS  Google Scholar 

  • Janssen, C., Heijerick, D., De Schamphelaere, K., & Allen, H. (2003). Environmental risk assessment of metals: tools for incorporating bioavailability. Environment International, 28(8), 793–800.

    Article  CAS  Google Scholar 

  • Khellaf, N., & Zerdaoui, M. (2009). Growth response of the duckweed Lemna minor to heavy metal pollution. Iranian: Journal of Environmental Health Science and Engineering, 6(3), 161–166.

    Google Scholar 

  • Jonker, M. J., Svendsen, C., Bedaux, J. J. M., Bongers, M., & Kammenga, J. E. (2005). Significance testing of synergistic/antagonistic, dose level–dependent, or dose ratio–dependent effects in mixture dose–response analysis. Environmental Toxicology and Chemistry, 24(10), 2701–2713.

    Article  CAS  Google Scholar 

  • Koukal, B., Guéguen, C., Pardos, M., & Dominik, J. (2003). Influence of humic substances on the toxic effects of cadmium and zinc to the green alga Pseudokirchneriella subcapitata. Chemosphere, 53(8), 953–961.

    Article  CAS  Google Scholar 

  • Lampert, W., & Sommer, U. (1997). Limnoecology: the ecology of lakes and streams. New York: Oxford University Press.

    Google Scholar 

  • Langdon, C. J., Piearce, T. G., Meharg, A. A., & Semple, K. T. (2001). Survival and behaviour of the earthworms Lumbricus rubellus and Dendrodrilus rubidus from arsenate-contaminated and non-contaminated sites. Soil Biology and Biochemistry, 33(9), 1239–1244.

    Article  CAS  Google Scholar 

  • Lewis, M. A. (1995). Use of freshwater plants for phytotoxicity testing: a review. Environmental Pollution, 87(3), 319–336.

    Article  CAS  Google Scholar 

  • Liang, H., & Thomson, B. M. (2010). Minerals and mine drainage. Water Environment Research, 82(10), 1485–1533.

    Article  CAS  Google Scholar 

  • Lilius, H., Hästbacka, T., & Isomaa, B. (1995). Short communication: a comparison of the toxicity of 30 reference chemicals to Daphnia magna and Daphnia pulex. Environmental Toxicology and Chemistry, 14(12), 2085–2088.

    CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C., & Berger, T. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31.

    Article  CAS  Google Scholar 

  • Malmqvist, B., & Hoffsten, P.-O. (1999). Influence of drainage from old mine deposits on benthic macroinvertebrate communities in central Swedish streams. Water Research, 33(10), 2415–2423.

    Article  CAS  Google Scholar 

  • Marín-Guirao, L., Cesar, A., Marín, A., Lloret, J., & Vita, R. (2005). Establishing the ecological quality status of soft-bottom mining-impacted coastal water bodies in the scope of the Water Framework Directive. Marine Pollution Bulletin, 50(4), 374–387.

    Article  Google Scholar 

  • Marques, C. R., Pereira, R., & Gonçalves, F. (2011). Toxicity evaluation of natural samples from the vicinity of rice fields using two trophic levels. Environmental Monitoring and Assessment, 180, 521–536.

    Article  Google Scholar 

  • Meyer, J. S., Ingersoll, C. G., McDonald, L. L., & Boyce, M. S. (1986). Estimating uncertainty in population growth rates: jackknife vs. bootstrap techniques. Ecology, 67, 1156–1166.

    Article  Google Scholar 

  • Nebeker, A. V., Cairns, M. A., Gakstatter, J. H., Malueg, K. W., Schuytema, G. S., & Krawczyk, D. F. (1984). Biological methods for determining toxicity of contaminated freshwater sediments to invertebrates. Environmental Toxicology and Chemistry, 3(4), 617–630.

    Article  CAS  Google Scholar 

  • NOOA (2008). SQuiRTs—screening quick reference table. Seattle, Office of Response and Restoration Division, National Atmospheric and Oceanic Administration

  • Nunes, M. L. (2007). Diagnóstico da qualidade ambiental das bacias do rio Mau e Caima. Estudo da dinâmica dos processos naturais e antrópicos e definição de zonas vulneráveis. University of Aveiro, pp. 119.

  • Nunes, M., Ferreira Da Silva, E., & De Almeida, S. (2003). Assessment of water quality in the Caima and Mau river basins (Portugal) using geochemical and biological indices. Water, Air, and Soil Pollution, 149(1), 227–250.

    Article  CAS  Google Scholar 

  • OECD. (1998). Daphnia magna reproduction test—test guideline 211. Paris, France: Organization for the Economic Cooperation and Development.

    Google Scholar 

  • OECD (2004). Daphnia sp., Acute immobilisation test. Revisal proposed for updating Guideline 202. Paris: Organization for the Economic Cooperation and Development.

  • OECD (2006). Lemna sp. growth inhibition test. Revised proposal for a new Guideline 221. Paris: Organization fot the Economic Cooperation and Development.

  • OECD. (2011). Freshwater alga and cyanobacteria, growth inhibition test. Paris: Organization for the Economic Cooperation and Development.

    Google Scholar 

  • Ozmen, H., Kulahci, F., Cukurovali, A., & Dogru, M. (2004). Concentrations of heavy metal and radioactivity in surface water and sediment of Hazar Lake (ElazI, Turkey). Chemosphere, 55(3), 401–408.

    Article  CAS  Google Scholar 

  • Parvez, S., Venkataraman, C., & Mukherji, S. (2006). A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environment International, 32(2), 265–268.

    Article  CAS  Google Scholar 

  • Peijnenburg, W., & Jager, T. (2003). Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicology and Environmental Safety, 56(1), 63–77.

    Article  CAS  Google Scholar 

  • Peplow, D., & Edmonds, R. (2005). The effects of mine waste contamination at multiple levels of biological organization. Ecological Engineering, 24(1–2), 101–119.

    Article  Google Scholar 

  • Pereira, J. L., Marques, C., & Gonçalves, F. (2004a). Allometric relations for Ceriodaphnia spp. and Daphnia spp. Annales de Limnologie-International Journal of Limnology, 40(1), 11–14.

    Article  Google Scholar 

  • Pereira, R., Ribeiro, R., & Gonçalves, F. (2004b). Plan for an integrated human and environmental risk assessment in the S. Domingos Mine Area (Portugal). Human and Ecological Risk Assessment: An International Journal, 10(3), 543–578.

    Article  CAS  Google Scholar 

  • Pereira, R., Antunes, S., Marques, S., & Gonçalves, F. (2008). Contribution for tier 1 of the ecological risk assessment of Cunha Baixa uranium mine (Central Portugal): I. Soil chemical characterization. Science of the Total Environment, 390(2–3), 377–386.

    Article  CAS  Google Scholar 

  • Pickering, W. F. (2002). General strategies for speciation. In A. M. Ure & C. M. Davidson (Eds.), Chemical speciation in the environment (pp. 7–29). Glasgow: Blackwell.

    Chapter  Google Scholar 

  • Ringwood, A. H., DeLorenzo, M. E., Ross, P. E., & Holland, A. F. (1997). Interpretation of Microtox® solid phase toxicity tests: the effects of sediment composition. Environmental Toxicology and Chemistry, 16(6), 1135–1140.

    Article  CAS  Google Scholar 

  • Santos, J. (2010). Avaliação da qualidade ecológica do rio Mau. University of Aveiro, pp. 59.

  • Santos Oliveira, J. M., Farinha, J., Matos, J. X., Ávila, P., Rosa, C., Canto Machado, M. J. (2005). Diagnóstico Ambiental das Principais Áreas Mineiras Degradadas do País. Boletim de Minas Online- Volume 39 Nº 2.

  • Shahidul Islam, M., & Tanaka, M. (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Marine Pollution Bulletin, 48(7–8), 624–649.

    Article  Google Scholar 

  • Shehata, S. A., Lasheen, M. R., Ali, G. H., & Kobbia, I. A. (1999). Toxic effect of certain metals mixture on some physiological and morphological characteristics of freshwater algae. Water, Air, and Soil Pollution, 110(1), 119–135.

    Article  CAS  Google Scholar 

  • Spehar, R. L., & Fiandt, J. T. (1986). Acute and chronic effects of water quality criteria based metal mixtures on three aquatic species. Environmental Toxicology and Chemistry, 5(10), 917–931.

    Article  CAS  Google Scholar 

  • Starnes, L. B., & Gasper, D. C. (1995). Effects of surface mining on aquatic resources in North America. Journal of Fisheries, 20(5), 20–23.

    Google Scholar 

  • Stein, J. R. (1973). Handbook of phycological methods—culture methods and growth measurements. London: Cambridge University Press.

    Google Scholar 

  • Teodorovic, I., Planojevic, I., Knezevic, P., Radak, S., & Nemet, I. (2009). Sensitivity of bacterial vs. acute Daphnia magna toxicity tests to metals. Central European Journal of Biology, 4(4), 482–492.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Tessier, A. J., Bizina, E. V., & Geedey, C. K. (2001). Grazer-resource interactions in the plankton: are all daphniids alike? Limnology and Oceanography, 1585-1595.

  • USEPA (1998). USACE: Great Lakes dredged material testing and evaluation manual—Appendix G. (pp. 242).

  • USEPA (2001). Methods for collection, storage and manipulation of sediments for chemical and toxicological analyses: technical manual. EPA 823-B-01-002. U.S. Environmental Protection Agency, Office of Water, Washington

  • USEPA (2002). Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms.EPA-821-R-02-013. Washington, DC.US Environmental Protection Agency, Office of Water.

  • Wharfe, J. (2004). Hazardous chemicals in complex mixtures—a role for direct toxicity assessment. Ecotoxicology, 13(5), 413–421.

    Article  CAS  Google Scholar 

  • Yim, J. H., Kim, K. W., & Kim, S. D. (2006). Effect of hardness on acute toxicity of metal mixtures using Daphnia magna: prediction of acid mine drainage toxicity. Journal of Hazardous Materials, 138(1), 16–21.

    Article  CAS  Google Scholar 

  • Young, P. (1997). The longevity of minewater pollution: a basis for decision-making. The Science of the Total Environment, 194, 457–466.

    Article  Google Scholar 

Download references

Acknowledgments

Tânia Vidal, Joana L Pereira, and Nelson Abrantes are recipients of individual scholarships by the Portuguese Foundation for Science and Technology (SFRH/BD/48046/2008, SFRH/BPD/44733/2008, and SFRH/BPD/35665/2007, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Luísa Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidal, T., Pereira, J.L., Abrantes, N. et al. Ecotoxicological Assessment of Contaminated River Sites as a Proxy for the Water Framework Directive: an Acid Mine Drainage Case Study. Water Air Soil Pollut 223, 6009–6023 (2012). https://doi.org/10.1007/s11270-012-1335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1335-x

Keywords

Navigation