Skip to main content

Biosorption of Toxic Heavy Metal Ions from Water Environment Using Honeycomb Biomass—An Industrial Waste Material

Abstract

This paper examined the ability of honeycomb biomass (HC), a by-product of the honey industry, to remove Pb(II), Cd(II), Cu(II), and Ni(II) ions from aqueous solutions. The equilibrium adsorptive quantity was determined as a function of the solution pH, amount of biomass, contact time, and initial metal ion concentration in a batch biosorption technique. Biosorbent was characterized by Fourier transform infrared (FTIR), scanning electron microscopy with energy-dispersive X-ray, and X-ray diffraction studies. FTIR spectral analysis confirmed the coordination of metals with hydroxyl, carbonyl, and carboxyl functional groups present in the HC. The metals uptake by HC was rapid, and the equilibrium time was 40 min at constant temperature and pH. Sorption kinetics followed a nonlinear pseudo-second-order model. Isotherm experimental data were fitted to Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin isotherm models in nonlinear forms. The mechanism of metal sorption by HC gave good fits for Langmuir model, and the affinity order of the biosorbent for four heavy metals was Pb(II)>Cd(II)>Cu(II)>Ni(II). The thermodynamic studies for the present biosorption process were performed by determining the values of ΔG°, ΔH°, and ΔS°, and it was observed that biosorption process is endothermic and spontaneous. This work provides an efficient and easily available environmental friendly honeycomb biomass as an attractive option for removing heavy metal ions from water and wastewater.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alomá, I., Martín-Lara, M. A., Rodríguez, I. L., Blázquez, G., Calero, M. (2012). Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. Journal of the Taiwan Institute of Chemical Engineers, 43, 275–281.

    Google Scholar 

  2. Anayurt, R. A., Sari, A., & Tuzen, M. (2009). Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass. Chemical Engineering Journal, 151, 255–261.

    Article  CAS  Google Scholar 

  3. Biswas, A. K., Umeki, K., Yang, W., & Blasiak, W. (2011). Change of pyrolysis characteristics and structure of woody biomass due to steam explosion pretreatment. Fuel Processing Technology, 92, 1849–1854.

    Article  CAS  Google Scholar 

  4. Cañizares, P., Pérez, Á., & Camarillo, R. (2002). Recovery of heavy metals by means of ultrafiltration with water-soluble polymers: calculation of design parameters. Desalination, 144, 279–285.

    Article  Google Scholar 

  5. Chang, W. C., Hsu, G. S., Chiang, S. M., & Su, M. C. (2006). Heavy metal removal from aqueous solution by wasted biomass from a combined AS–biofilm process. Bioresource Technology, 97, 1503–1508.

    Article  CAS  Google Scholar 

  6. Chubar, N., Carvalho, J. R., & Correia, M. J. N. (2004). Heavy metals biosorption on cork biomass: effect of the pre-treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 238, 51–58.

    Article  CAS  Google Scholar 

  7. Das, N. (2012). Remediation of radionuclide pollutants through biosorption—an overview. CLEAN – Soil, Air, Water, 40, 16–23.

    Article  CAS  Google Scholar 

  8. Deng, L., Su, Y., Su, H., Wang, X., & Zhu, X. (2007). Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. Journal of Hazardous Materials, 143, 220–225.

    Article  CAS  Google Scholar 

  9. Ding, Y., Jing, D., Gong, H., Zhou, L., & Yang, X. (2012). Biosorption of aquatic cadmium(II) by unmodified rice straw. Bioresource Technology, 114, 20–25.

    Article  CAS  Google Scholar 

  10. Dubinin, M. M., & Radushkevich, L. V. (1947). Equation of the characteristic curve of activated charcoal. Proceedings of the Academy of Sciences (USSR), 55, 331–333.

    Google Scholar 

  11. Freundlich, H. M. F. (1906). Uber die adsorption in losungen. Zeitschrift fur Physikalische Chemie (Leipzig), 57, 385–470.

    CAS  Google Scholar 

  12. Gavrilescu, M. (2004). Removal of heavy metals from the environment by biosorption. Engineering in Life Sciences, 4, 219–232.

    Article  CAS  Google Scholar 

  13. Gupta, V. K., & Rastogi, A. (2009). Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. Journal of Hazardous Materials, 163, 396–402.

    Article  CAS  Google Scholar 

  14. Gupta, V. K., & Nayak, A. (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chemical Engineering Journal, 180, 81--90

    Google Scholar 

  15. Gupta, V. K., Carrott, P. J. M., Ribeiro Carrott, M. M. L., & Suhas. (2009). Low-cost adsorbents: growing approach to wastewater treatment—a review. Critical Reviews in Environmental Science and Technology, 39, 783–842.

    Article  Google Scholar 

  16. Han, R., Li, H., Li, Y., Zhang, J., Xiao, H., & Shi, J. (2006). Biosorption of copper and lead ions by waste beer yeast. Journal of Hazardous Materials, 137, 1569–1576.

    Article  CAS  Google Scholar 

  17. Ho, Y.-S. (2006). Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Research, 40, 119–125.

    Article  CAS  Google Scholar 

  18. Ho, Y. S., & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 34, 735–742.

    Article  CAS  Google Scholar 

  19. Hu, R., Chen, Y.-Y., & Zhang, L.-M. (2010). Synthesis and characterization of in situ photogelable polysaccharide derivative for drug delivery. International Journal of Pharmaceutics, 393, 97–104.

    Article  Google Scholar 

  20. Iqbal, M., Schiewer, S., & Cameron, R. (2009). Mechanistic elucidation and evaluation of biosorption of metal ions by grapefruit peel using FTIR spectroscopy, kinetics and isotherms modeling, cations displacement and EDX analysis. Journal of Chemical Technology and Biotechnology, 84, 1516–1526.

    Article  CAS  Google Scholar 

  21. Iyer, A., Mody, K., & Jha, B. (2005). Biosorption of heavy metals by a marine bacterium. Marine Pollution Bulletin, 50, 340–343.

    Article  CAS  Google Scholar 

  22. Izquierdo, M., Marzal, P., Gabaldón, C., Silvetti, M., & Castaldi, P. (2012). Study of the interaction mechanism in the biosorption of copper(ii) ions onto posidonia oceanica and peat. CLEAN—Soil, Air, Water, 40, 428–437.

    Article  CAS  Google Scholar 

  23. Kaikake, K., Hoaki, K., Sunada, H., Dhakal, R. P., & Baba, Y. (2007). Removal characteristics of metal ions using degreased coffee beans: adsorption equilibrium of cadmium(II). Bioresource Technology, 98, 2787–2791.

    Article  CAS  Google Scholar 

  24. Kamari, A., & Ngah, W. S. W. (2009). Isotherm, kinetic and thermodynamic studies of lead and copper uptake by H2SO4 modified chitosan. Colloids and Surfaces. B, Biointerfaces, 73, 257–266.

    Article  CAS  Google Scholar 

  25. Kosasih, A. N., Febrianto, J., Sunarso, J., Ju, Y.-H., Indraswati, N., & Ismadji, S. (2010). Sequestering of Cu(II) from aqueous solution using cassava peel (Manihot esculenta). Journal of Hazardous Materials, 180, 366–374.

    Article  CAS  Google Scholar 

  26. Kurniawan, A., Kosasih, A. N., Febrianto, J., Ju, Y.-H., Sunarso, J., Indraswati, N., et al. (2011). Evaluation of cassava peel waste as lowcost biosorbent for Ni-sorption: equilibrium, kinetics, thermodynamics and mechanism. Chemical Engineering Journal, 172, 158–166.

    CAS  Google Scholar 

  27. Lagergren, S (1898). Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24, 1–39.

    Google Scholar 

  28. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38, 2221–2295.

    Article  CAS  Google Scholar 

  29. Li, F. T., Yang, H., Zhao, Y., & Xu, R. (2007). Novel modified pectin for heavy metal adsorption. Chinese Chemical Letters, 18, 325–328.

    Article  CAS  Google Scholar 

  30. Lin, J.-H., Wu, Z.-H., & Tseng, W.-L. (2010). Extraction of environmental pollutants using magnetic nanomaterials. Analytical Methods, 2, 1874–1879.

    Article  CAS  Google Scholar 

  31. Liu, C., Ngo, H. H., Guo, W., & Tung, K.-L. (2012). Optimal conditions for preparation of banana peels, sugarcane bagasse and watermelon rind in removing copper from water. Bioresource Technology, 119, 349–354.

    Article  CAS  Google Scholar 

  32. Martínez, M., Miralles, N., Hidalgo, S., Fiol, N., Villaescusa, I., & Poch, J. (2006). Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste. Journal of Hazardous Materials, 133, 203–211.

    Article  Google Scholar 

  33. Miretzky, P., Muñoz, C., & Carrillo-Chávez, A. (2008). Experimental binding of lead to a low cost on biosorbent: nopal (Opuntia streptacantha). Bioresource Technology, 99, 1211–1217.

    Article  CAS  Google Scholar 

  34. Montazer-Rahmati, M. M., Rabbani, P., Abdolali, A., & Keshtkar, A. R. (2011). Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. Journal of Hazardous Materials, 185, 401–407.

    Article  CAS  Google Scholar 

  35. Naiya, T. K., Chowdhury, P., Bhattacharya, A. K., & Das, S. K. (2009). Saw dust and neem bark as low-cost natural biosorbent for adsorptive removal of Zn(II) and Cd(II) ions from aqueous solutions. Chemical Engineering Journal, 148, 68–79.

    Article  CAS  Google Scholar 

  36. Oksman, K., Etang, J. A., Mathew, A. P., & Jonoobi, M. (2011). Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass and Bioenergy, 35, 146–152.

    Article  CAS  Google Scholar 

  37. Olu-Owolabi, B. I., Diagboya, P. N., & Ebaddan, W. C. (2012). Mechanism of Pb2+ removal from aqueous solution using a nonliving moss biomass. Chemical Engineering Journal, 195–196, 270–275.

    Article  Google Scholar 

  38. Oo, C. W., Kassim, M. J., & Pizzi, A. (2009). Characterization and performance of Rhizophora apiculata mangrove polyflavonoid tannins in the adsorption of copper (II) and lead (II). Industrial Crops and Products, 30, 152–161.

    Article  CAS  Google Scholar 

  39. Prakash Williams, G., Gnanadesigan, M., & Ravikumar, S. (2012). Biosorption and bio-kinetic studies of halobacterial strains against Ni2+, Al3+ and Hg2+ metal ions. Bioresource Technology, 107, 526–529.

    Article  CAS  Google Scholar 

  40. Ramana, D. K. V., Reddy, D. H. K., Yu, J. S., & Seshaiah, K. (2012a). Pigeon peas hulls waste as potential adsorbent for removal of Pb(II) and Ni(II) from water. Chemical Engineering Journal, 197, 24–33.

    Article  Google Scholar 

  41. Ramana, D. K. V., Reddy, D. H. K., Kumar, B. N., Harinath, Y., & Seshaiah, K. (2012b). Removal of nickel from aqueous solutions by citric acid modified Ceiba pentandra hulls: equilibrium and kinetic studies. The Canadian Journal of Chemical Engineering, 90, 111–119.

    Article  CAS  Google Scholar 

  42. Reddy, D. H. K., Seshaiah, K., Reddy, A. V. R., Rao, M. M., & Wang, M. C. (2010a). Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: equilibrium and kinetic studies. Journal of Hazardous Materials, 174, 831–838.

    Article  CAS  Google Scholar 

  43. Reddy, D. H. K., Harinath, Y., Seshaiah, K., & Reddy, A. V. R. (2010b). Biosorption of Pb(II) from aqueous solutions using chemically modified Moringa oleifera tree leaves. Chemical Engineering Journal, 162, 626–634.

    Article  CAS  Google Scholar 

  44. Reddy, D. H. K., Ramana, D. K. V., Seshaiah, K., & Reddy, A. V. R. (2011). Biosorption of Ni(II) from aqueous phase by Moringa oleifera bark, a low-cost biosorbent. Desalination, 268, 150–157.

    Article  CAS  Google Scholar 

  45. Reddy, D. H. K., Seshaiah, K., Reddy, A. V. R., & Lee, S. M. (2012). Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder. Carbohydrate Polymers, 88, 1077–1086.

    Article  CAS  Google Scholar 

  46. Saeed, A., Iqbal, M., & Akhtar, M. W. (2005). Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). Journal of Hazardous Materials, 117, 65–73.

    Article  CAS  Google Scholar 

  47. Shroff, K. A., & Vaidya, V. K. (2011). Kinetics and equilibrium studies on biosorption of nickel from aqueous solution by dead fungal biomass of Mucor hiemalis. Chemical Engineering Journal, 171, 1234–1245.

    Article  CAS  Google Scholar 

  48. Srividya, K., & Mohanty, K. (2009). Biosorption of hexavalent chromium from aqueous solutions by Catla catla scales: equilibrium and kinetics studies. Chemical Engineering Journal, 155, 666–673.

    Article  CAS  Google Scholar 

  49. Tarley, C. R. T., & Arruda, M. A. Z. (2004). Biosorption of heavy metals using rice milling by-products. Characterisation and application for removal of metals from aqueous effluents. Chemosphere, 54, 987–995.

    Article  Google Scholar 

  50. Temkin, M. I., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochimica (URSS), 12, 327–356.

    CAS  Google Scholar 

  51. Thevannan, A., Mungroo, R., & Niu, C. H. (2010). Biosorption of nickel with barley straw. Bioresource Technology, 101, 1776–1780.

    Article  CAS  Google Scholar 

  52. Vázquez, G., González-Álvarez, J., Freire, S., López-Lorenzo, M., & Antorrena, G. (2002). Removal of cadmium and mercury ions from aqueous solution by sorption on treated Pinus pinaster bark: kinetics and isotherms. Bioresource Technology, 82, 247–251.

    Article  Google Scholar 

  53. Volesky, B. (2007). Biosorption and me. Water Research, 41, 4017–4029.

    Article  CAS  Google Scholar 

  54. Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division. Proceedings of the American Society of Civil Engineers, 89, 31–59.

    Google Scholar 

  55. Witek-Krowiak, A. (2012). Analysis of temperature-dependent biosorption of Cu2+ ions on sunflower hulls: kinetics, equilibrium and mechanism of the process. Chemical Engineering Journal, 192, 13–20.

    Article  CAS  Google Scholar 

  56. Witek-Krowiak, A., Szafran, R. G., & Modelski, S. (2011). Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination, 265, 126–134.

    Article  CAS  Google Scholar 

  57. Wu, Y., Zhang, L., Gao, C., Ma, J., Ma, X., & Han, R. (2009). Adsorption of copper ions and methylene blue in a single and binary system on wheat straw. Journal of Chemical and Engineering Data, 54, 3229–3234.

    Article  CAS  Google Scholar 

  58. Zhou, D., Zhang, L., & Guo, S. (2005). Mechanisms of lead biosorption on cellulose/chitin beads. Water Research, 39, 3755–3762.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Desireddy Harikishore Kumar Reddy or Seung-Mok Lee.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 100 kb)

ESM 2

(PDF 110 kb)

ESM 3

(PDF 109 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reddy, D.H.K., Lee, SM. & Seshaiah, K. Biosorption of Toxic Heavy Metal Ions from Water Environment Using Honeycomb Biomass—An Industrial Waste Material. Water Air Soil Pollut 223, 5967–5982 (2012). https://doi.org/10.1007/s11270-012-1332-0

Download citation

Keywords

  • Adsorption
  • Biosorption
  • Honeycomb
  • Isotherms
  • Kinetics
  • Heavy metals