Skip to main content

Advertisement

Log in

Feasibility of Field Portable Near Infrared (NIR) Spectroscopy to Determine Cyanide Concentrations in Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Vicinities of manufactured gas plants were often contaminated with solid iron–cyanide complexes as a result of the coal gasification process. During the remediation of affected soils, knowledge about contaminant concentrations is crucial, but laboratory methods are often expensive and time consuming. Rapid and non-destructive field methods for contaminant determination permit an analysis of large sample numbers and hence, facilitate identification of ‘hot spots’ of contamination. Diffuse near infrared reflectance spectroscopy has proven to be a reliable analytical tool in soil investigation. In order to determine the feasibility of a Polychromix Handheld Field Portable Near-Infrared Analyzer (FP NIR), various sample preparation methods were examined, including homogenizing, sieving, drying, and grinding. Partial least squares calibration models were developed to determine near infrared (NIR) spectral responses to the cyanide concentration in the soil samples. As a control, the contaminant concentration was determined using conventional flow injection analysis. The experiments revealed that portable near-infrared spectrometers could be a reliable device for detecting cyanide concentrations >2,400 mg kg−1 in the field and >1,750 mg kg−1 after sample preparation in the laboratory. We found that portable NIR spectrometry cannot replace traditional laboratory analyses due to high limits of detection, but that it could be used for identification of contamination ‘hot spots’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Allen, J. F., & Bonnette, A. K., Jr. (1974). Thermal decomposition of Prussian Blue: isotopic labeling with Mössbauer-inactive Fe-56. Journal of Inorganic and Nuclear Chemistry, 36(5), 1011–1016.

    Article  CAS  Google Scholar 

  • Blanco, M., & Villarroya, I. (2002). NIR spectroscopy: a rapid-response analytical tool. Trends in Analitical Chemistry, 21(4), 240–250.

    Article  CAS  Google Scholar 

  • Blanco, M., Coello, J., Iturriaga, H., Maspoch, S., & Pagès, J. (1999). Calibration in non-linear near infrared reflectance spectroscopy: a comparison of several methods. Analitica Chimica Acta, 384(2), 207–214.

    Article  CAS  Google Scholar 

  • Bokobza, L. (2002). Origin of near-infrared absorption bands. In H. W. Siesler, Y. Ozaki, S. Kawata, & H. M. Heise (Eds.), Near-infrared spectroscopy. Principles, instruments, applications (pp. 11–41). Weinheim: Wiley-VCH.

    Google Scholar 

  • Chang, C. W., Laird, D. A., Mausbach, M. J., & Hurburgh, C. R., Jr. (2001). Near-infrared reflectance spectroscopy–principal components regression analysis of soil properties. Soil Science Society of America Journal, 65, 480–490.

    Article  CAS  Google Scholar 

  • Chapman, S. J., Campbell, C. D., Fraser, A. R., & Puri, G. (2001). FTIR spectroscopy of peat in bordering Scots pine woodland: relationship with chemical and biological properties. Soil Biology and Biochemistry, 33(9), 1193–1200.

    Article  CAS  Google Scholar 

  • Confalonieri, M., Fornasier, F., Ursino, A., Boccardi, F., Pintus, B., & Odoardi, B. (2001). The potential of near infrared reflectance spectroscopy as a tool for the chemical characterization of agricultural soils. Journal of Near Infrared Spectroscopy, 9, 123–131.

    Article  CAS  Google Scholar 

  • Cozzolino, D., & Moron, A. (2006). Potential of near-infrared reflectance spectroscopy and chemometrics to predict soil organic carbon fractions. Soil & Tillage Research, 85, 78–85.

    Article  Google Scholar 

  • Dimitrova T (2010) Determination of cyanides in contaminated soils using micro distillation- and spectrophotometric flow injection system. Faculty of environmental sciences and process engineering. Brandenburg University of Technology, 37–43

  • Durig, J. R. (2002). Utility of isotopic data. In J. M. Chalmers & P. R. Griffiths (Eds.), Handbook of vibrational spectroscopy: sample characterization and spectrat data processing; Volumne 3 (pp. 1935–1947). Chichester: Wiley.

    Google Scholar 

  • Dzombak, D. A., Ghosh, R. S., & Young, T. C. (2006). Physical–chemical properties and reactivity of cyanide in water and soil. In D. A. Dzombak, R. S. Ghosh, & G. M. Wong-Chong (Eds.), Cyanide in water and soil: chemistry, risk and management (pp. 57–88). Boca Raton: Taylor and Francis.

    Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap (Vol. 57 of monographs on statistics and applied probability). Boca Raton: Chapman and Hall.

    Google Scholar 

  • Ellerbrock, R. H., Gerke, H. H., Bachmann J., & Goebel M. O. (2005). Composition of organic matter fractions for explaining wettability of three forest soils. Soil Science Society of America Journal, 69, 57–66.

    Google Scholar 

  • Farmer, V. C. (1974). The layer silicates. In V. C. Farmer (Ed.), Infrared spectra of minerals. The Mineralogical Society monograph 4 (pp. 331–363). London: The Mineralogical Society.

    Google Scholar 

  • Fidencio, P. H., Poppi, R. J., & de Andrade, J. C. (2002). Determination of organic matter in soils using radial basis function networks and near infrared spectroscopy. Analytica Chimica Acta, 453, 125–134.

    Article  CAS  Google Scholar 

  • Fischer, T., Veste, M., Schaaf, W., Dümig, A., Kögel-Knabner, I., Wiehe, W., Bens, O., & Hüttl, R. F. (2010). Initial pedogenesis in a topsoil crust 3 years after construction of an artificial catchment in Brandenburg, NE Germany. Biogeochemistry, 101(1–3), 165–176.

    Article  Google Scholar 

  • Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1–17.

    Article  CAS  Google Scholar 

  • Gorge, W. O., & Lewis, R. (2002). Hydrogen bonding. In J. M. Chalmers & P. R. Griffiths (Eds.), Handbook of vibrational spectroscopy: sample characterization and spectrat data processing ; Volumne 3 (pp. 1919–1934). Chichester: Wiley.

    Google Scholar 

  • Haaland, D. M., & Thomas, E. V. (1988). Partial least-squares methods for spectral analyses: 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Analytical Chemistry, 60, 1193–1202.

    Article  CAS  Google Scholar 

  • Haberhauer, G., Rafferty, B., Strebl, F., & Gerzabek, M. H. (1998). Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy. Geoderma, 83(3–4), 331–342.

    Article  CAS  Google Scholar 

  • He, Y., Song, H., Pereira, A. G., & Gomez, A. H. (2005). A new approach to predict N, P, K and OM content in a loamy mixed soil by using near infrared reflectance spectroscopy. Lecture Notes in Computer Science, 3644, 859–867.

    Article  Google Scholar 

  • Hürkamp, K., Raab, T., & Völkel, J. (2009). Two and three-dimensional quantification of lead contamination in alluvial soils of a historic mining area using field portable X-ray fluorescence (FPXRF) analysis. Geomorphology, 110, 28–36.

    Article  Google Scholar 

  • Janik, L. J., Merry, R. H., & Skjemstad, J. O. (1998). Can mid infra-red diffuse reflectance analysis replace soil extractions? Australian Journal of Experimental Agriculture, 38, 681–696.

    Article  Google Scholar 

  • Jannusch, B., Mansfeldt, T., & Specovius, J. (2002). Characterization of cyanides in soils and industrial wastes by Fourier transform infrared spectroscopy. Zeitschrift für Umweltchemie und Ökotoxikologie, 14, 90–95.

    Article  CAS  Google Scholar 

  • Kjeldsen, P. (1998). Behavior of cyanides in soil and groundwater: a review. Water, Air, and Soil Pollution, 115, 279–307.

    Article  Google Scholar 

  • Linder, M., Bugmann, H., Lasch, P., Fleschig, M., & Cramer, W. (1997). Regional impacts of climatic change on forests in the state of Brandenburg, Germany. Agricultural and Forest Meteorology, 84, 123–135.

    Article  Google Scholar 

  • Madari, B. E., Reeves, J. B., Machado, P. L. O. A., Guimaraes, C. M., Torres, E., & McCarty, G. W. (2006). Mid- and near-infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferralsols. Geoderma, 136(1–2), 245–259.

    Article  CAS  Google Scholar 

  • Malley, D. F., & Williams, P. C. (1997). Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter. Environental Science and Technology, 31, 3461–3467.

    Article  CAS  Google Scholar 

  • Mansfeldt, T., & Biernath, H. (2001). Method comparison for the determination of total cyanide in deposited blast furnace sludge. Analitica Chimica Acta, 435, 377–384.

    Article  CAS  Google Scholar 

  • Martens, H., & Næs, T. (1989). Multivariate calibration. New York: Wiley.

    Google Scholar 

  • McCarty, G., & Reeves, J. (2001). Development of rapid instrumental methods for measuring soil organic carbon. In R. Lal (Ed.), Assessment methods for soil carbon (pp. 371–380). Boca Raton: Lewis.

    Google Scholar 

  • Meeussen, J. C., & Meindert, G. (1994). Solubility of cyanide in contaminated soils. Journal of Environmental Quality, 23, 785–787.

    Article  CAS  Google Scholar 

  • Meeussen, J. C., Keizer, M. G., & de Haan, F. A. (1992). Chemical stability and decomposition rate of iron cyanide complexes in soil solutions. Environmental Science and Technology, 26(3), 511–516.

    Article  CAS  Google Scholar 

  • Nakamoto, K. (2002). Infrared and Raman spectra of inorganic and coordination compounds. In J. M. Chalmers & P. R. Griffiths (Eds.), Handbook of vibrational spectroscopy: sample characterization and spectrat data processing; Volumne 3 (pp. 1872–1892). Chichester: Wiley.

    Google Scholar 

  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633–1644.

    Article  Google Scholar 

  • Proffit, D., Marion, P., & Rouillier, M. C. (2001). Cyanide polluted solids—a combined leachate and solid characterization. In C. A. Young, L. G. Twidwell, & C. G. Anderson (Eds.), Cyanide: social, industrial, and economic aspects (pp. 133–140). Warrendale: TMS.

    Google Scholar 

  • Rennert, T., Ufhold, S., & Mansfeldt, T. (2007). Identification of iron–cyanide complexes in contaminated soils and wastes by fourier transform infrared spectroscopy. Environmental Science and Technology, 41, 5266–5270.

    Article  CAS  Google Scholar 

  • Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analitical Chemistry, 36(8), 1627–1639.

    Article  CAS  Google Scholar 

  • Shenk, J. S., Workman, J. J., Jr., & Westerhaus, M. O. (1992). Application of NIR spectroscopy to agricultural products. In D. A. Burns & E. W. Ciurczak (Eds.), Handbook of near-infrared analysis (pp. 383–431). New York: Marcel Dekker.

    Google Scholar 

  • Siebielec, G., McCarty, G. W., Stuczynski, T. I., & Reeves, J. B., III. (2004). Near- and mid-infrared diffuse reflectance spectroscopy for measuring soil metal content. Journal of Environmental Quality, 33, 2056–2069.

    Article  CAS  Google Scholar 

  • Slaughter, D. C., Pelletier, M. G., & Upadhyaya, S. K. (2001). Sensing soil moisture using NIR spectroscopy. Applied Engineering in Agriculture, 17, 241–247.

    Google Scholar 

  • Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131, 59–75.

    Article  CAS  Google Scholar 

  • Zornoza, R., Guerrero, C., Mataix-Solera, J., Scow, K. M., Arcenegui, V., & Mataix-Beneyto, J. (2008). Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils. Soil Biology and Biochemistry, 40(7), 1923–1930.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brandenburg Ministry of Science, Research and Culture (MWFK) as part of the International Graduate School at Brandenburg University of Technology (BTU). This study was partially funded by Deutsche Bahn AG within the project “Stabilisierung des DB AG-Standortes”ehem. Leuchtgasanstalt Cottbus“durch Verfahren der Bioremediation (Phytoremediation)”. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis—ICLEA—of the Helmholtz Association. We would like to thank Dipl.-Ing. Florian Jenn (Cottbus, Germany) and Prof. Dr. Janusz Stangret (Gdansk, Poland) who helped in data analysis. We would also like to acknowledge the anonymous reviewers for their truly helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Sut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sut, M., Fischer, T., Repmann, F. et al. Feasibility of Field Portable Near Infrared (NIR) Spectroscopy to Determine Cyanide Concentrations in Soil. Water Air Soil Pollut 223, 5495–5504 (2012). https://doi.org/10.1007/s11270-012-1298-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1298-y

Keywords