Skip to main content
Log in

Application of Adsorption and Ultrafiltration Processes for the Pre-treatment of Several Industrial Wastewater Streams

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this work ultrafiltration (UF) was coupled with suitable minerals and dried activated sludge for the pre-treatment of several industrial wastewater streams. The aim was to decrease heavy metal concentrations to low levels so that wastewater can be safely discharged into municipal sewers or biological wastewater treatment can take place without biomass inhibition problems. Industrial wastewater originating from metal plating, chemical and textile industries was employed. The experiments were conducted in a reactor where the UF membrane module was immersed. UF reduced the amount of heavy metals, but the performance was variable with removal efficiencies ranging from 20 to 99.7 %, depending on the metal type and on the wastewater initial characteristics. The prevailing wastewater characteristics were the pH, the presence of certain anions, the suspended solids concentration and the presence of competing cations. The addition of activated sludge and/or minerals could further increase heavy metal removal through the process of sorption. UF assisted by minerals could achieve variable colour and COD removal ranging from 22 to 94 % and 58 to > 99.9 % respectively. Minerals resulted in membrane fouling mitigation, while sludge adversely impacted on fouling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abollino, O., Aceto, M., Malandrino, M., Sarzanini, C., & Mentasti, E. (2003). Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Research, 37, 1619–1627.

    Article  CAS  Google Scholar 

  • Anirudhan, T. S., & Suchithra, P. S. (2010). Heavy metals uptake from aqueous solutions and industrial wastewaters by humic acid-immobilized polymer/bentonite composite: kinetics and equilibrium modelling. Chemical Engineering Journal, 156, 146–156.

    Article  CAS  Google Scholar 

  • APHA, AWWA, WEF. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association, American Water Works Association, Water Environment Federation.

    Google Scholar 

  • Argun, M. E. (2008). Use of clinoptilolite for the removal of nickel ions from water: kinetics and thermodynamics. Journal of Hazardous Materials, 150, 587–595.

    Article  CAS  Google Scholar 

  • ASTM. (2000). Standard test method for color of clear liquids (platinum–cobalt scale, D1209-00). West Conshohocken: ASTM.

    Google Scholar 

  • Baban, A., Yediler, A., Avaz, S., & Hostede, S. (2010). Biological and oxidative treatment of cotton textile dye-bath effluents by fixed and fluidized bed reactors. Bioresource Technology, 101, 1147–1152.

    Article  CAS  Google Scholar 

  • Barakat, M. A., & Schmidt, E. (2010). Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination, 256, 90–93.

    Article  CAS  Google Scholar 

  • Bessbousse, H., Rhlalou, T., Verchère, J.-F., & Lebrun, L. (2008). Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly(ethyleneimine) in a poly(vinyl alcohol) matrix. Journal of Membrane Science, 307, 249–259.

    Article  CAS  Google Scholar 

  • Blöcher, C., Dorda, J., Mavrov, V., Chmiel, H., Lazaridis, N. K., & Matis, K. A. (2003). Hybrid flotation–membrane filtration process for the removal of heavy metal ions from wastewater. Water Research, 37, 4018–4026.

    Article  Google Scholar 

  • Bodzek, M., Korus, I., & Loska, K. (1999). Application of the hybrid complexation–ultrafiltration process for removal of metal ions from galvanic wastewater. Desalination, 121, 117–121.

    Article  CAS  Google Scholar 

  • Borbély, G., & Nagy, E. (2009). Removal of zinc and nickel ions by complexation–membrane filtration process from industrial wastewater. Desalination, 240, 218–226.

    Article  Google Scholar 

  • Camarillo, R., Llanos, J., García-Fernández, L., Pérez, A., & Cañizares, P. (2010). Treatment of copper (II)-loaded aqueous nitrate solutions by polymer enhanced ultrafiltration and electrodeposition. Separation and Purification Technology, 70, 320–328.

    Article  CAS  Google Scholar 

  • Canizares, P., Pérez, A., Camarillo, R., Llanos, J., & López, M. L. (2007). Selective separation of Pb from hard water by a semi-continuous polymer-enhanced ultrafiltration process (PEUF). Desalination, 206, 602–613.

    Article  CAS  Google Scholar 

  • Channarong, B., Lee, S. H., Bade, R., & Shipin, O. V. (2010). Simultaneous removal of nickel and zinc from aqueous solution by micellar-enhanced ultrafiltration and activated carbon fiber hybrid process. Desalination, 262, 221–227.

    Article  CAS  Google Scholar 

  • Fan, F., Zhou, H., & Husain, H. (2006). Identification of wastewater sludge characteristics to predict critical flux for membrane bioreactor processes. Water Research, 40, 205–212.

    Article  CAS  Google Scholar 

  • Fatin-Rouge, N., Dupont, A., Vidonne, A., Dejeu, J., Fievet, P., & Foissy, A. (2006). Removal of some divalent cations from water by membrane-filtration assisted with alginate. Water Research, 40, 1303–1309.

    Article  CAS  Google Scholar 

  • Gikas, P. (2008). Single and combined effects of nickel (Ni(II)) and cobalt (Co(II)) ions on activated sludge and on other aerobic microorganisms: a review. Journal of Hazardous Materials, 159, 187–203.

    Article  CAS  Google Scholar 

  • Gikas, P. (2007). Kinetic responses of activated sludge to individual and joint nickel (Ni(II)) and cobalt (Co(II)): an isobolographic approach. Journal of Hazardous Materials, 143, 246–256.

    Article  CAS  Google Scholar 

  • Gregorio, R., Jr., & Cestari, M. (1994). Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene Fluoride). Journal of Polymer Science Part B: Polymer Physics, 32, 859–870.

    Article  CAS  Google Scholar 

  • Guibaud, G., Tixier, N., Bouju, A., & Baudu, M. (2003). Relation between extracellular polymers’ composition and its ability to complex Cd, Cu and Pb. Chemosphere, 52, 1701–1710.

    Article  CAS  Google Scholar 

  • Gulnaz, O., Saygideger, S., & Kusvuran, E. (2005). Study of Cu(II) biosorption by dried activated sludge: effect of physico-chemical environment and kinetics studies. Journal of Hazardous Materials, B120, 193–200.

    Article  Google Scholar 

  • Hammes, F., Boon, N., De Villiers, J., Verstraete, W., & Siciliano, S. D. (2003). Strain-specific ureolytic microbial calcium carbonate precipitation. Applied and Environmental Microbiology, 69, 4901–4909.

    Article  CAS  Google Scholar 

  • Harrison, J. J., Ceri, H., & Turner, R. J. (2007). Multimetal resistance and tolerance in microbial biofilms. Nature Reviews Microbiology, 5, 928–938.

    Article  CAS  Google Scholar 

  • Hong, S. G., Young, J. D., Chen, G. W., Chang, I. L., Hung, W. T., & Lee, D. J. (1995). Freeze/thaw treatment on waste activated sludge: a FTIR spectroscopic study. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology, 30, 1717–1726.

    Article  Google Scholar 

  • Juang, R. S., & Shiau, R. C. (2000). Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. Journal of Membrane Science, 165, 159–167.

    Article  CAS  Google Scholar 

  • Katsou, E., Malamis, S., Haralambous, K. J., & Loizidou, M. (2010). Use of ultrafiltration membranes and aluminosilicate minerals for nickel removal from industrial wastewater. Journal of Membrane Science, 360, 234–249.

    Article  CAS  Google Scholar 

  • Kelly, C. J., Tumsoroj, N., & Lajoie, C. A. (2004). Assessing wastewater metal toxicity with bacterial bioluminescence in a bench-scale wastewater treatment system. Water Research, 38, 423–431.

    Article  CAS  Google Scholar 

  • Landaburu-Aguirre, J., Pongrácz, E., Perämäki, P., & Keiski, R. L. (2010). Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: use of response surface methodology to improve understanding of process performance and optimisation. Journal of Hazardous Materials, 180, 524–534.

    Article  CAS  Google Scholar 

  • Lazaridis, N. K., Blöcher, C., Dorda, J., & Matis, K. A. (2004). A hybrid MF process based on flotation. Journal of Membrane Science, 228, 83–88.

    Article  CAS  Google Scholar 

  • Llanos, J., Perez, A., & Canizares, P. (2008). Copper recovery by polymer-enhanced ultrafiltration (PEUF) and electrochemical regeneration. Journal of Membrane Science, 323, 28–36.

    Article  CAS  Google Scholar 

  • Lock, K., Eeckhout, H. V., De Schamphelaere, K. A. C., Criel, P., & Janssen, C. R. (2007). Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare). Chemosphere, 66, 1346–1352.

    Article  CAS  Google Scholar 

  • Malamis, S., & Andreadakis, A. (2009). Fractionation of proteins and carbohydrates of extracellular polymeric substances in a membrane bioreactor system. Bioresource Technology, 100, 3350–3357.

    Article  CAS  Google Scholar 

  • Malamis, S., Katsou, E., Chazilias, D., & Loizidou, M. (2009). Investigation of Cr(III) removal from wastewater with the use of MBR combined with low-cost additives. Journal of Membrane Science, 333, 12–19.

    Article  CAS  Google Scholar 

  • Malamis, S., Katsou, E., Stylianou, M., Haralambous, K. J., & Loizidou, M. (2010). Copper removal from sludge permeate with ultrafiltration membranes using zeolite, bentonite and vermiculite as adsorbents. Water Science and Technology, 61, 581–589.

    Article  CAS  Google Scholar 

  • Malandrino, M., Abollino, O., Giacomino, A., Aceto, M., & Mentasti, E. (2006). Adsorption of heavy metals on vermiculite: influence of pH and organic ligands. Journal of Colloid and Interface Science, 299, 537–546.

    Article  CAS  Google Scholar 

  • Mavrov, V., Erwe, T., Blocher, C., & Chmiel, H. (2003). Study of new integrated processes combining adsorption, membrane separation and flotation for heavy metal removal from wastewater. Desalination, 157, 97–104.

    Article  CAS  Google Scholar 

  • Mbareck, C., Nguyen, Q. T., Alaoui, O. T., & Barillier, D. (2009). Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water. Journal of Hazardous Materials, 171, 93–101.

    Article  CAS  Google Scholar 

  • Molinari, R., Argurio, P., & Poerio, T. (2006). Ultrafiltration of polymer–metal complexes for metal ion removal from wastewaters. Macromolecular Symposia, 235, 206–214.

    Article  CAS  Google Scholar 

  • Nasir, M. H., Nadeem, R., Akhtar, K., Hanif, M. A., & Khalid, A. M. (2007). Efficacy of modified distillation sludge of rose (Rosa centifolia) petals for lead(II) and zinc(II) removal from aqueous solutions. Journal of Hazardous Materials, 147, 1006–1014.

    Article  CAS  Google Scholar 

  • Otero, M., Rozada, F., Morán, A., Calvo, L. F., & García, A. I. (2009). Removal of heavy metals from aqueous solution by sewage sludge based sorbents: competitive effects. Desalination, 238, 46–57.

    Article  Google Scholar 

  • Pagnanelli, F., Mainelli, S., Bornoroni, L., Dionisi, D., & Toro, L. (2009). Mechanisms of heavy-metal removal by activated sludge. Chemosphere, 75, 1028–1034.

    Article  CAS  Google Scholar 

  • Park, Y. J., Kang, Y. S., & Park, C. (2011). Micropatterning of semicrystalline poly(vinylidene fluoride) (PVDF) solutions. European Polymer Journal, 41, 1002–1012.

    Article  Google Scholar 

  • Patidar, S. K., & Tare, V. (2004). Influence of nutrients on biomass evolution in an upflow anaerobic sludge blanket reactor degrading sulfate-laden organics. Water Environment Research, 76, 2620–2627.

    CAS  Google Scholar 

  • Petrov, S., & Nenov, V. (2004). Removal and recovery of copper from wastewater by a complexation–ultrafiltration process. Desalination, 162, 201–209.

    Article  CAS  Google Scholar 

  • Rivas, B. L., Pereira, E., Cid, R., & Geckeler, K. E. (2005). Polyelectrolyte-assisted removal of metal ions with ultrafiltration. Journal of Applied Polymer Science, 95, 1091–1099.

    Article  CAS  Google Scholar 

  • Saffaj, N., Loukili, H., Younssi, S. A., Albizane, A., Bouhria, M., Persin, M., & Larbot, A. (2004). Filtration of solution containing heavy metals and dyes by means of ultrafiltration membranes deposited on support made of Moroccan clay. Desalination, 168, 301–306.

    Article  CAS  Google Scholar 

  • Santi, C. A., Cortes, S., D’Acqui, L. P., Sparvoli, E., & Pushparaj, B. (2008). Reduction of organic pollutants in olive mill wastewater by using different mineral substrates as adsorbents. Bioresource Technology, 99, 1945–1951.

    Article  CAS  Google Scholar 

  • Satapathy, S., Pawar, S., Gupta, P. K., & Varma, K. B. R. (2011). Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent. Bulletin of Materials Science, 34, 727–733.

    Article  CAS  Google Scholar 

  • Silva, J. O., Filho, G. R., Meireles, C. S., Ribeiro, S. D., Vieira, J. G., Da Silva, C. V., & Cerqueira, D. A. (2012). Thermal analysis and FTIR studies of sewage sludge produced in treatment plants The case of sludge in the city of Uberlândia—MG, Brazil. Thermochimica Acta, 528, 72–75.

    Article  CAS  Google Scholar 

  • Turan, M., Mart, U., Yuksel, B., & Celik, M. S. (2005). Lead removal in fixed-bed columns by zeolite and sepiolite. Chemosphere, 60, 1487–1492.

    Article  CAS  Google Scholar 

  • US, EPA (2005). Streamlining the general pretreatment regulations for existing and new sources of pollution 40 CFR Parts 9, 122 and 403. Washington, DC: EPA.

  • Yang, G. C. C., & Tsai, C. M. (2006). Performance evaluation of Cu-CMP and oxide-CMP wastewaters. Journal of Membrane Science, 286, 36–44.

    Article  CAS  Google Scholar 

  • Yee, N., Benning, L. G., Phoenix, V. R., & Ferris, F. G. (2004). Characterization of metal-Cyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation. Environmental Science and Technology, 38, 775–782.

    Article  CAS  Google Scholar 

  • Zamboulis, D., Pataroudi, S. I., Zouboulis, A. I., & Matis, K. A. (2004). The application of sorptive flotation for the removal of metal ions. Desalination, 162, 159–168.

    Article  CAS  Google Scholar 

  • Zou, X., Zhu, G., Guo, H., Jing, X., Xu, D., & Qiu, S. (2009). Effective heavy metal removal through porous stainless-steel-net supported low siliceous zeolite ZSM-5 membrane. Microporous and Mesoporous Materials, 124, 70–75.

    Article  CAS  Google Scholar 

  • Κ.Υ.Α. 20488/2010 (ΦΕΚ 749/Β) «Καθορισμός Ποιοτικών Περιβαλλοντικών Προτύπων στον ποταμό Ασωπό και Οριακών Τιμών Εκπομπών υγρών βιομηχανικών αποβλήτων στη λεκάνη απορροής του Ασωπού.»

Download references

Acknowledgments

This research has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Heraclitus II. Investing in Knowledge Society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Malamis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsou, E., Malamis, S., Kosanovic, T. et al. Application of Adsorption and Ultrafiltration Processes for the Pre-treatment of Several Industrial Wastewater Streams. Water Air Soil Pollut 223, 5519–5534 (2012). https://doi.org/10.1007/s11270-012-1255-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1255-9

Keywords

Navigation