Skip to main content
Log in

Identification of Cytotoxicity Intermediate Products and Degradation Pathways for Microcystins Using Low-Frequency Ultrasonic Irradiation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, two microcystins (MCs) were examined. MC-LR and MC-RR were degraded with low frequencies (20, 40, 60, 100, and 200 kHz) of ultrasonic waves. The optimal ultrasonic frequency for treating MCs was 200 kHz. Kinetic reaction results indicated that the degradation reactions of MC-LR and MC-RR from low-frequency ultrasound obeyed the pseudo-first-order kinetic model. The structural characterizations of the intermediate products were identified via liquid chromatography-mass spectrometry, which elucidated the mechanism of the degradation pathways. The main degradation pathways in the LC-MS analysis were Adda and Mdha. The cytotoxic effects on human oral epidermoid carcinoma (KB) cells were evaluated through cell viability assay using 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide. The inhibitory effect of ≥5 μg/mL MC-LR on KB cells was significantly enhanced in a dose-dependent manner. Compared with the control, the viability of the KB cells cultured with 15 and 5 μg/mL MC-LR was increased by 23 % and 29 %, respectively, after the application of MC-LR and the optimization of the frequencies' ultrasonic irradiated treatment for 48 h. A similar trend was observed in the degradation of ultrasonic irradiated MC-RR. Compared with the control, the viability of the KB cells cultured with 15 and 5 μg/mL MC-RR increased by 12 % and 22 %, respectively (P < 0.05). Results showed that low-frequency ultrasonic irradiation effectively reduced the cytotoxicity of the intermediate products of MCs. Therefore, low-frequency ultrasound is a feasible method for the detoxification of drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adewuyi, Y. G. (2001). Sonochemistry: environmental science and engineering applications. Industrial and Engineering Chemistry Research, 40(22), 4681–4715.

    Article  CAS  Google Scholar 

  • Bandala, E. R., Martinez, D., Martinez, E., & Dionysiou, D. D. (2004). Degradation of microcystin-LR toxin by Fenton and photo-Fenton processes. Toxicon, 43(7), 829–832.

    Article  CAS  Google Scholar 

  • David, B. (2009). Sonochemical degradation of PAH in aqueous solution. Part I. Monocomponent PAH solution. Ultrasonics Sonochemistry, 16(2), 260–265.

    Article  CAS  Google Scholar 

  • Gajdek, P., Lechowski, Z., Bochnia, T., & Kepczynski, M. (2001). Decomposition of microcystin-LR by Fenton oxidation. Toxicon, 39, 1575–1578.

    Article  CAS  Google Scholar 

  • Gaudin, J., Huet, S., Jarry, G., & Fessard, V. (2008). In vivo DNA damage induced by the cyanotoxin microcystin-LR: comparison of intra-peritoneal and oral administrations by use of the comet assay. Mutation Research, 652, 65–71.

    Article  CAS  Google Scholar 

  • Harada, K. I., Tsuji, K., Watanabe, M. F., & Kondo, F. (1996). Stability of microcystins from cyanobacteria-III, effect of pH and temperature. Phycologia, 35(6), 83–88.

    Article  Google Scholar 

  • Hudder, A., Song, W. H., O’Shea, K. E., & Walsh, P. J. (2007). Toxicogenomic evaluation of microcystin-LR treated with ultrasonic irradiation. Toxicology Applied Pharmacy, 220, 357–364.

    Article  CAS  Google Scholar 

  • Inoue, M., Masuda, Y., Okada, F., Sakurai, A., Takahashi, I., & Sakakibara, M. (2008). Degradation of bisphenol A using sonochemical reactions. Water Research, 42(6–7), 1379–1386.

    Article  CAS  Google Scholar 

  • Keijola, A. M., Himberg, K., Esala, A. L., Sivonen, K., & Hiisvirta, L. (1988). Removal of cyanobacterial toxins in water treatment processes: laboratory and pilot-scale experiments. Toxicology Assessment, 3(5), 643–656.

    Article  CAS  Google Scholar 

  • Liu, I., Lawton, L. A., & Robertson, P. K. J. (2003). Mechanistic studies of the photocatalytic oxidation of microcystin-LR: an investigation of products of the decomposition process. Environmental Science and Technology, 37, 3214–3219.

    Article  CAS  Google Scholar 

  • Liu, Y., Jin, D., Lu, X., & Han, P. (2008). Study on degradation of dimethoate solution in ultrasonic airlift loop reactor. Ultrasonics Sonochemistry, 15(5), 755–760.

    Article  CAS  Google Scholar 

  • Mahamuni, N. N., & Adewuyi, Y. G. (2010). Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17, 990–1003.

    Article  CAS  Google Scholar 

  • Matouq, M. A., Al-Anber, Z. A., Tagawa, T., Aljbour, S., & Al-Shannag, M. (2008). Degradation of dissolved diazinon pesticide in water using the high frequency of ultrasound wave. Ultrasonics Sonochemistry, 15(5), 869–874.

    Article  CAS  Google Scholar 

  • Mendez-Arriaga, F., Torres-Palma, R. A., Petrier, C., Esplugas, S., Gimenez, J., & Pulgarin, C. (2008). Ultrasonic treatment of water contaminated with ibuprofen. Water Research, 42(16), 4243–4248.

    Article  CAS  Google Scholar 

  • Miao, H. F., Qin, F., Tao, G. J., Tao, W. Y., & Ruan, W. Q. (2010). Detoxification and degradation of microcystin-LR and -RR by ozonation. Chemosphere, 79, 355–361.

    Article  CAS  Google Scholar 

  • Mosmann, T. (1983). Rapid colorimetric assay for growth and survival application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.

    Article  CAS  Google Scholar 

  • Naddeo, V., Belgiorno, V., Ricco, D., & Kassinos, D. (2009). Degradation of diclofenac during sonolysis, ozonation and their simultaneous application. Ultrasonics Sonochemistry, 16, 790–794.

    Article  CAS  Google Scholar 

  • Ohko, Y., Iuchi, K., Niwa, C., Tatsuma, T., Nakashima, T., Iguchi, T., et al. (2002). 17 beta-estradiol degradation by TiO2 photocatalysis as a means of reducing estrogenic activity. Environmental Science and Technology, 36(19), 4175–4181.

    Article  CAS  Google Scholar 

  • Petrier, C., Jiang, Y., & Lamy, M. (1998). Ultrasound and environment: sonochemical destruction of chloromatic derivatives. Environmental Science and Technology, 32, 1316–1318.

    Article  CAS  Google Scholar 

  • Psillakis, E., Goula, G., Kalogerakis, N., & Mantzavinos, D. (2004). Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation. Journal of Hazardous Materials, 108(1–2), 95–102.

    Article  CAS  Google Scholar 

  • Rehorek, A., Tauber, M., & Guebitz, G. (2004). Application of power ultrasound for azo dye degradation. Ultrasonics Sonochemistry, 11, 177–182.

    Article  CAS  Google Scholar 

  • Sabljic, A., & Peijnenburg, W. (2001). Recommendations on modelling lifetime and degradability of organic compounds in air, soil and water systems. Pure and Applied Chemistry, 73, 1331–1348.

    Article  CAS  Google Scholar 

  • Sanchez-Prado, L., Barro, R., Garcia-Jares, C., Llompart, M., Lores, M., Petrakis, C., et al. (2008). Sonochemical degradation of triclosan in water and wastewater. Ultrasonics Sonochemistry, 15(5), 689–694.

    Article  CAS  Google Scholar 

  • Song, W. H., Teshiba, T., Rein, K., & O’Shea, K. E. (2005). Ultrasonically induced degradation and detoxification of microcystin-LR (cyanobacterial toxin). Environmental Science and Technology, 39(16), 6300–6305.

    Article  CAS  Google Scholar 

  • Song, W. H., De La Cruz, A. A., Rein, K., & O’Shea, K. E. (2006). Ultrasonically induced degradation of microcystin-LR and -RR: indentification of products, effect of pH, formation and destruction of peroxides. Environmental Science and Technology, 40(12), 3941–3946.

    Article  CAS  Google Scholar 

  • Svircev, Z., Baltic, V., Gantar, M., Jukovic, M., Stojanovic, D., & Baltic, M. (2010). Molecular aspects of microcystin-induced hepatotoxicity and hepatocarcinogenesis. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 28(1), 39–59.

    Article  CAS  Google Scholar 

  • Tsuji, K., Naito, S., Kondo, F., Ishikawa, N., Watanabe, M. F., Suzuki, M., et al. (1994). Stability of microcystins from cyanobacteria: effect of light on decomposition and isomerization. Environmental Science and Technology, 28(1), 173–177.

    Article  CAS  Google Scholar 

  • Vasconcelos, V. M., Sivonen, K., Evans, W. R., Carmichael, W. W., & Namikoshi, M. (1996). Hepatotoxic microcystin diversity in cyanobacterial blooms collected in portuguese freshwaters. Water Research, 30(10), 2377–2384.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhang, H., & Chen, L. (2011). Ultrasound enhanced catalytic ozonation of tetracycline in a rectangular air-lift reactor. Catalysis Today, 175, 283–292.

    Article  CAS  Google Scholar 

  • Yao, J. J., Gao, N. Y., Li, C., Li, L., & Xu, B. (2010). Mechanism and kinetics of parathion degradation under ultrasonic irradiation. Journal of Hazardous Materials, 175, 138–145.

    Article  CAS  Google Scholar 

  • Žegura, B., Lah, T., & Filipič, M. (2004). The role of reactive oxygen species in microcystin-LR-induced DNA damage. Toxicology, 200(1), 59–68.

    Article  Google Scholar 

  • Zhang, S., & Yu, X. (2010). PMA in combination with quantitative PCR for the detection of inactivation efficacy by ultrasonic sonication. Fresenius Environment Bulltin, 19(5), 940–944.

    CAS  Google Scholar 

  • Zhang, G. M., Zhang, P. Y., Wang, B., & Liu, H. (2006). Ultrasonic frequency effects on the removal of Microcystis aeruginosa. Ultrasonics Sonochemistry, 13, 446–450.

    Article  CAS  Google Scholar 

  • Zhao, L. D., Zhang, B. P., Li, J. F., Zhang, H. L., & Liu, W. S. (2008). Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sciences, 10, 651–658.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Foundation of Education Ministry, China (708034). The authors are grateful to the State Key Laboratory of Yangtze River Water Environment, Ministry of Education, for generously providing facilities for the experiments and analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiping Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Han, X., Zhu, Z. et al. Identification of Cytotoxicity Intermediate Products and Degradation Pathways for Microcystins Using Low-Frequency Ultrasonic Irradiation. Water Air Soil Pollut 223, 5027–5038 (2012). https://doi.org/10.1007/s11270-012-1254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1254-x

Keywords

Navigation