Skip to main content
Log in

The Efficacy of the Four-Part Test Network to Monitor Water Quality in the Loxahatchee National Wildlife Refuge

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The Loxahatchee National Wildlife Refuge (Refuge) is impacted by inflows containing elevated contaminant concentrations originating from agricultural and urban areas. Water quality was analyzed using the Enhanced Refuge (ERN), the four-part test (FPTN), and the Consent Decree (CDN) monitoring networks within four zones in the Refuge. The zones were defined as the canal surrounding the marsh, the perimeter, the transition, and the interior zones. Although regression coefficients for ALK and SpC, and Ca, Cl, and SO4 concentrations with distance from the canal were lower using the FPTN than when using the ERN, using the FPTN to measure water quality parameters in the Refuge would give similar results as the ERN. Most of the ERN and FPTN sites are located in the northern and central areas of the Refuge. Water is deeper in the southern Refuge, and on an area basis contains a greater volume of water than the northern and central Refuge and therefore, water flow from the canal into the marsh in the northern and southern Refuge may differ. Numerous water quality monitoring sites must be added to the ERN and FPTN in the southern area to characterize water quality in the southern Refuge with confidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • APHA. (2005). Standard methods for the examination of water and wastewater, American Public Health Association, American Water Works Association, and Water Environment Federation. D.C.: Washington.

    Google Scholar 

  • Asaeda, T., & Hung, L. Q. (2007). Internal heterogeneity of ramet and flower densities of Typha angustafolia near the boundary of a stand. Wetlands Ecology and Management, 2(15), 155–164.

    Article  Google Scholar 

  • Bruland, G. L., Grunwald, S., Osborne, T. Z., Reddy, K. R., & Newman, S. (2006). Spatial distribution of soil properties in water conservation area 3 of the Everglades. Soil Science Society of America Journal, 70(5), 1662–1676.

    Article  CAS  Google Scholar 

  • Bruland, G. L., Osborne, T. Z., Reddy, K. R., Grunwald, S., Newman, S., & DeBusk, W. F. (2007). Recent changes in soil total phosphorus in the Everglades: water conservation area 3. Environmental Monitoring and Assessment, 129(1), 379–395.

    Article  CAS  Google Scholar 

  • Chang, C. Y., McCormick, P. V., Newman, S., & Elliott, E. M. (2009). Isotopic indicators of environmental change in a subtropical wetland. Ecological Indicators, 9(5), 825–836.

    Article  CAS  Google Scholar 

  • Childers, D. L., Doren, R. F., Jones, R., Noe, G. B., Rugge, M., & Scinto, L. J. (2003). Decadal change in vegetation and soil phosphorus pattern across the Everglades landscape. Journal of Environmental Quality, 32(1), 344–362.

    CAS  Google Scholar 

  • Cooper, S. R., Huvane, J., Vaithyanathan, P., & Richardson, C. J. (1999). Calibration of diatoms along a nutrient gradient in Florida Everglades Water Conservation Area—2A. Journal of Paleolimnolology, 22(1), 413–437.

    Article  Google Scholar 

  • Corstanje, R., Grunwald, S., Reddy, K. R., Osborne, T. Z., & Newman, S. (2006). Assessment of the spatial distribution of soil properties in a northern Everglades marsh. Journal of Environmental Quality, 35(3), 938–949.

    Article  CAS  Google Scholar 

  • Davis, S. M. (1994). Phoshphorus inputs and vegetation sensitivity in the Everglades. In S. M. Davis, & J. C. Ogden, (Eds.), Everglades: The ecosystem and its restoration (pp. 357–378). Delray Beach, FL: St Lucie Press.

  • Davis, S. E., Coronado-Molina, C. L., Childers, D. L., & Day, J. W. (2003). Temporarily dependant C, N, and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in oligotrophic mangrove wetlands of the southern Everglades. Aquatic Botany, 1(75), 199–215.

    Article  Google Scholar 

  • DeBusk, W. F., Newman, S., & Reddy, K. R. (2001). Spatio-temporal patterns of soil phosphorus enrichment in Everglades Water Conservation Area 2A. Journal of Environmental Quality, 30(4), 1438–1446.

    Article  CAS  Google Scholar 

  • Dorazio, R. M., & Johnson, F. A. (2003). Bayesian inference and decision theory—A framework for decision making in natural resource management. Ecological Applications, 13(2), 556–563.

    Article  Google Scholar 

  • Doren, R. F., Armentano, T. V., Whiteaker, L. D., & Jones, R. D. (1997). Marsh vegetation patterns and soil phosphorus gradients in the Everglades ecosystem. Aquatic Botany, 56(1), 145–163.

    Article  CAS  Google Scholar 

  • Entry, J. A. (2012a). Water quality characterization in the northern Florida Everglades. Water, Air and Soil Pollution. (on line first).

  • Entry, J. A. (2012b). Water quality characterization in the northern Florida everglades based on three different monitoring networks. Environmental Monitoring and Assessment. (in press).

  • Entry, J.A. (2012c). Water quality trends in the Loxahatchee National Wildlife Refuge. Water Soil and Air Pollution. (in press).

  • Gaiser, E. E. (2009). Periphyton as an early indicator of restoration in the Florida Everglades. Ecological Indicators. 9s, 537-545.

  • Gaiser, E. E., Scinto, L. J., Richards, J. H., Jayachandaran, K., Childers, D. L., Trexler, J. C., et al. (2004). Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment an oligotrophic wetland. Water Research, 38(3), 507–516.

    Article  CAS  Google Scholar 

  • Gaiser, E. E., Trexler, J. C., Richards, J. H., Childers, D. L., Lee, D., Edwards, A. L., et al. (2005). Cascading ecological effects of low-level phosphorus enrichment in the Florida Everglades. Journal of Environmental Quality, 34(2), 717–723.

    Article  CAS  Google Scholar 

  • Gaiser, E. E., Childers, D. L., Jones, R. D., Richards, J. H., Scinto, L. J., & Trexler, J. C. (2006). Periphyton responses to eutrophication in the Florida Everglades: cross-system patterns of structural and compositional change. Limnology and Oceanography, 51(2), 342–355.

    Article  Google Scholar 

  • Hagerthey, S. E., Newman, S., Ruthey, K., Smith, E. K., & Godin, J. (2008). Multiple regime shifts in a subtropical peatland: Community-specific thresholds to eutrophication. Ecological Monographs, 78(4), 547–565.

    Article  Google Scholar 

  • Harvey, J. W., Saiers, J. E., & Newlin, J. T. (2005). Solute movement and storage mechanisms in wetland of the Everglades, South Florida. Water Resources Research, 41(W05009), 1–14.

    Google Scholar 

  • Harwell, M. C., Surratt, D. D., Barone, D. M., & Aumen, N. G. (2008). Spatial characterization of water quality in the northern Everglades—examining water quality impacts from agricultural and urban runoff. Environmental Monitoring and Assessment, 142(3), 445–462.

    Article  Google Scholar 

  • King, R. S., Richardson, C. J., Urban, D. L., & Romanowicz, E. A. (2004). Spatial dependency of vegetation–environment linkages in an anthropogenically influenced ecosystem. Ecosystems, 7(1), 75–97.

    Article  CAS  Google Scholar 

  • Kirk, R. E. (1995). Experimental design: Procedures for the behavioral sciences (2nd ed.). Belmont, CA: Brooks Cole. 537pp.

    Google Scholar 

  • McCormick, P. V., & Stevenson, R. J. (1998). Periphyton as a tool for ecological assessment and management in the Florida Everglades. Journal of Phycology, 34(5), 726–733.

    Article  Google Scholar 

  • McCormick, P. V., Rawlik, P. S., Lurding, K., Smith, E. P., & Sklar, F. H. (1996). Periphyton water quality relationships along a nutrient gradient in the northern Florida Everglades. Journal of the North American Benthological Society, 15(4), 433–449.

    Article  Google Scholar 

  • McCormick, P. V., Newman, S., & Vilchek, L. W. (2009). Landscape responses to wetland eutrophication: loss of slough habitat in the Florida Everglades, USA. Hydrobiologia, 621(1), 105–114.

    Article  CAS  Google Scholar 

  • Miao, S. L., Newman, S., & Sklar, F. H. (2000). Effects of habitat nutrients and seed sources on growth and expansion of Typha domingensis. Aquatic Botany, 68(1), 297–311.

    Article  Google Scholar 

  • Miao, S. L., McCormick, P. V., Newman, S., & Rajagopalan, S. (2001). Interactive effects of seed availability, water depth, and phosphorus enrichment on cattail colonization in an Everglades wetland. Wetlands Ecology and Management, 9(1), 39–47.

    Article  Google Scholar 

  • Newman, S., Reddy, K. R., Debusk, W. F., & Yang, Y. (1997). Spatial distribution of soil nutrients in a northern Everglades marsh: water conservation area 1. Soil Science Society of America Journal, 61(4), 1275–1283.

    Article  CAS  Google Scholar 

  • Noe, G. B., Childers, D. L., & Jones, R. D. (2001). Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique. Ecosystems, 4(7), 603–624.

    Article  CAS  Google Scholar 

  • Noe, G. B., Scinto, L. J., Taylor, J., Childers, D., & Jones, R. D. (2003). Phosphorus cycling and partitioning in an oligotrophic Everglades wetland ecosystem: a radioisotope tracing study. Freshwater Biology, 48(11), 1993–2008.

    Article  CAS  Google Scholar 

  • Pan, Y., Stevenson, J., Vaithyanathan, P., Slate, J., & Richardson, C. J. (2000). Changes in algal assemblages along observed and experimental phosphorus gradients in a subtropical wetland, USA. Freshwater Biology, 44(2), 339–353.

    Article  Google Scholar 

  • Park, S., Choi, J. H., Wang, S., & Wang, S. S. (2006). Design of a water quality monitoring network in a large river system using genetic algorithm. Ecological Modeling, 199(2), 289–297.

    Article  Google Scholar 

  • Payne, G.G., Weaver, K.C., and Xui, S.K. (2007). Chapter 3C: Status of phosphorus and nitrogen in the Everglades Protection Area, In: 2007 South Florida Environmental Report, Volume I. pp 3C-1-3C-41. South Florida Water Management District, West Palm Beach, FL. Available at: http://my.sfwmd.gov/portal/page/portal/pg_grp_ sfwmd_sfer/portlet_prevreport/volume1/chapters/v1_ch_3c.pdf

  • Payne, G.G., Hallas, K., and Xui, S.K. (2011). Chapter 3A: Status of water in the Everglades Protection Area, In: 2011 South Florida Environmental Report, Volume I. pp 3A-1-3A-59. South Florida Water Management District, West Palm Beach, FL. Available at: http://www.sfwmd.gov/portal/page/portal/pg_grp_sfwmd_sfer/portlet_prevreport/2011_sfer/v1/chapters/v1_ch3a.pdf

  • Rutchey, K., Schall, T., & Sklar, F. (2008). Development of vegetation maps for assessing Everglades restoration progress. Wetlands, 28, 806–816.

    Article  Google Scholar 

  • SAS Institute Inc. (2008). SAS user's guide: Statistics–version 8.01 edition. Statistical Analysis System (SAS) Institute Inc., Cary, NC. 584pp.

  • SFWMD. (2006). Monitoring plan for Everglades Protection Area—Water Conservation Area 1 (WCA1) Project: EVPA. Version: 10 July, 2006. South Florida Water Management District, West Palm Beach, FL 22pp. Available at: http://www.sfwmd/gov/org/ema/toc/ archives/2006_08_29/ evpa_wca1 monitoring_plan.pdf.

  • Sklar, F. H., Chimney, M. J., Newman, S., McCormick, P., Gawlik, D., Miao, S. L., et al. (2005). The ecological–societal underpinnings of Everglades restoration. Frontiers in Ecology, 3(1), 161–169.

    Google Scholar 

  • Snedecor, G. W., & Cochran, W. G. (1994). Statistical methods (7th ed.). Ames, Iowa: Iowa State University Press. 354pp.

    Google Scholar 

  • Strobl, R. O., & Robillard, P. D. (2008). Network design for water quality monitoring of surface freshwaters: a review. Journal of Environmental Management, 87(4), 639–648.

    Article  Google Scholar 

  • Strobl, R. O., Robillard, P. D., Shannon, R. D., Day, R. L., & McDonnell, A. J. (2006a). Water quality monitoring network design methodology for the selection of critical sampling points: part I. Environmental Monitoring and Assessment, 112(1), 137–158.

    Article  CAS  Google Scholar 

  • Strobl, R. O., Robillard, P. D., Shannon, R. D., Day, R. L., & McDonnell, A. J. (2006b). Water quality monitoring network design methodology for the selection of critical sampling points: part II. Environmental Monitoring and Assessment, 112(1–3), 319–334.

    Article  Google Scholar 

  • Surratt, D., Waldon, M. G., Harwell, M. C., & Aumen, N. G. (2008). Temporal and spatial trends of canal water intrusion into a northern Everglades marsh in Florida, USA. Wetlands, 28(1), 173–186.

    Article  Google Scholar 

  • USFWS, (2000). Arthur R. Marshall Loxahatchee National Wildlife Refuge Comprehensive Conservation Plan. US Fish and Wildlife Service, Boynton Beach, FL. Available at: http://loxhatchee.fws.gov.

  • USFWS, (2007a). Arthur R. Marshall Loxahatchee National Wildlife Refuge—Enhanced monitoring and modeling program annual report. LOX06-008, U.S. Fish and Wildlife Service, Boynton Beach, FL pp 183, Available at: http://sofia.usgs.gov/lox_monitor_model/reports/.

  • USFWS, (2007b). Arthur R. Marshall Loxahatchee National Wildlife Refuge—Enhanced monitoring and modeling program annual report. LOX07-005, U.S. Fish and Wildlife Service, Boynton Beach, FL pp 183, available at: http://sofia.usgs.gov/lox_monitor_model/reports/.

  • USGS. (2005). Digital elevation map of the Loxahatchee National Wildlife Refuge. United States Geological Services, FL, USA. http://sofia.usgs.gov/exchange/desmond/atlas/.

  • Wang, H., Waldon, M. G., Meselhe, E., Arceneaux, J., Chen, C., & Harwell, M. C. (2009). Surface water sulfate dynamics in the Northern Florida Everglades, USA. Journal of Environmental Quality, 38(2), 734–741.

    Article  CAS  Google Scholar 

  • Williams, B. K. (1996). Adaptive optimization and the harvest of biological populations. Mathematical Biosciences, 136(1), 1–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Rebekah Gibble, Grant Gifford, Angie Markovich, Serena Rinker, Robert Smith, and Tiffany Trent for water quality sampling and collection; the SFWMD and Columbia Analytical Services for water chemistry analyses; SFWMD for access to their DBHYDRO for database; Leslie MacGregor for GIS; and April Ostrem for data QA/QC analyses. Funding was provided by the US Congress P.L. 108-108 and the Department of Interior Appropriations Act of 2004. The opinions expressed herein do not necessarily reflect those of the Department of Interior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Entry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Entry, J.A. The Efficacy of the Four-Part Test Network to Monitor Water Quality in the Loxahatchee National Wildlife Refuge. Water Air Soil Pollut 223, 4999–5015 (2012). https://doi.org/10.1007/s11270-012-1252-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1252-z

Keywords

Navigation