Water, Air, & Soil Pollution

, Volume 223, Issue 8, pp 4969–4997 | Cite as

Removal of Hydrophobic Volatile Organic Compounds in an Integrated Process Coupling Absorption and Biodegradation—Selection of an Organic Liquid Phase

  • Guillaume Darracq
  • Annabelle Couvert
  • Catherine Couriol
  • Abdeltif AmraneEmail author
  • Pierre Le Cloirec


Since usual processes involve water as absorbent, they appear not always really efficient for the treatment of hydrophobic volatile organic compound (VOC). Recently, absorption and biodegradation coupling in a two-phase partitioning bioreactor (TPPB) proved to be a promising technology for hydrophobic compound treatment. The choice of the organic phase, the non-aqueous phase liquid (NAPL) is based on various parameters involved in both steps of the process, hydrophobic VOC absorption in a gas–liquid contactor, and biodegradation in the TPPB. VOC solubility and diffusivity in the selected NAPL, as well as NAPL viscosity, seems to be the main parameters during the absorption step, while biocompatibility, namely the absence of toxic effect of the NAPL towards microorganisms, non-biodegradability and VOC partition coefficient between NAPL and water were revealed as the key factors during the biodegradation step. The screening of the various NAPL available in the literature highlighted two families of compounds matching the required conditions for the proposed integrated process, silicone oils and ionic liquids.


Hydrophobic VOC Absorption Two-phase partitioning bioreactor Non-aqueous phase liquid Silicone oils Ionic liquids 


  1. Abe, A., Inoue, A., Usami, R., Moriya, K., & Horikoshi, K. (1995). Degradation of polyaromatic hydrocarbons by organic solvent-tolerant bacteria from deep sea. Bioscience, Biotechnology, and Biochemistry, 59, 1154–1156.CrossRefGoogle Scholar
  2. Abed, R. M. M., & Köster, J. (2005). The direct role of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds. International Biodeterioration and Biodegradation, 55, 29–37.CrossRefGoogle Scholar
  3. Aldric, J. M., & Thonart, P. (2008). Performance of a water/silicone oil two-phase partitioning bioreactor using Rhoococcus erythropolis T902.1 to remove volatile organic compounds from gaseous effluents. Journal of Chemical Technology and Biotechnology, 83, 1401–1408.CrossRefGoogle Scholar
  4. Aldric, J. M., Gillet, S., Delvigne, F., Blecker, C., Lebeau, F., Wathelet, J. P., et al. (2009). Effect of surfactants and biomass on the gas/liquid mass transfer in an aqueous-silicone oil two-phase partitioning bioreactor using Rhodococcus erythropolis T902.1 to remove VOCs from gaseous effluents. Journal of Chemical Technology and Biotechnology, 84, 1274–1283.CrossRefGoogle Scholar
  5. Aldric, J. M., Lecomte, J. P., & Thonat, P. (2009). Study on mass transfer of isopropylbenzene and oxygen in a two-phase partitioning bioreactor in the presence of silicone oil. Applied Biochemistry and Biotechnology, 153, 67–79.CrossRefGoogle Scholar
  6. Alexander, M. (1973). Non-biodegradadable and other recalcitrant molecules. Biotechnology and Bioengineering, 15, 611–647.CrossRefGoogle Scholar
  7. Alvarez, P. J., & Vogel, T. M. (1991). Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Applied and Environmental Microbiology, 57(10), 2981–2985.Google Scholar
  8. Arriaga, S., Muñoz, R., Hernandez, S., Guieysse, B., & Revah, S. (2006). Gaseous hexane biodegradation by Fusarium solani in two liquid phase packed-bed and stirred tank bioreactors. Environmental Science and Technology, 40, 2390–2395.CrossRefGoogle Scholar
  9. Ascon-Cabrera, M. A., & Lebeault, J. M. (1993). Selection of xenobiotic-degrading microorganisms in a biphasic aqueous-organic system. Applied and Environmental Microbiology, 59, 1717–1724.Google Scholar
  10. Ascon-Cabrera, M. A., & Lebeault, J. M. (1995). Cell hydrophobicity influencing the activity/stability of xenobiotic-degrading microorganisms in a continous biphasic aqueous-organic system. Journal of Fermentation and Bioengineering, 80, 270–275.CrossRefGoogle Scholar
  11. Barnabe, E. S., Beauchesne, I., Cooper, D. G., & Nicell, J. A. (2008). Plasticizers and their degradation products in the process streams of a large urban physicochemical sewage treatment plant. Water Research, 42, 153–162.CrossRefGoogle Scholar
  12. Berekaa, M. M., & Steinbüch, A. (2000). Microbial degradation of the multiply branched alkane 2,6,10,15,19,23-hexamethyltetracosane (Squalane) by Mycobacterium fortuitum and Mycobacterium ratisbonense. Applied and Environmental Microbiology, 66, 4462–4467.CrossRefGoogle Scholar
  13. Biard, P. F., Couvert, A., Renner, C., Zozor, P., Bassivière, S., & Levasseur, J. P. (2009). Hydrogen sulphide removal in waste water treatment plant by compact oxidative scrubbing in Aquilair PlusTM process. Water Practice Technology, 4. doi: 10.2166/wpt.2009.2023.
  14. Biard, P. F., Couvert, A., Renner, C., & Levasseur, J. P. (2010). Wet scrubbing intensification applied to hydrogen sulphide removal in waste water treatment plant. Canadian Journal of Chemical Engineering, 88, 682–687.Google Scholar
  15. Birman, I., & Alexander, M. (1996). Optimizing biodegradation of phenanthrene dissolved in nonaqueous-phase liquids. Applied Microbiology and Biotechnology, 45, 267–272.CrossRefGoogle Scholar
  16. Bouchez, M., Blanchet, D., & Vandecasteele, J. P. (1995). Substrate availability in phenanthrene biodegradation by natural microbial communities. Applied Microbiology and Biotechnology, 43, 952–960.CrossRefGoogle Scholar
  17. Bouchez, M., Blanchet, D., & Vandecasteele, J. P. (1997). An interfacial uptake mechanism for the degradation of pyrene by Rhodococcus strain. Microbiology, 143, 1087–1093.CrossRefGoogle Scholar
  18. Boudreau, N. G., & Daugulis, A. J. (2006). Transient performance of two phase partitioning bioreactor treating a toluene contaminated gas stream. Biotechnology and Bioengineering, 94, 448–457.CrossRefGoogle Scholar
  19. Bourgois, D., Thomas, D., Fanlo, J. L., & Vanderschuren, J. (2006). Solubilities at high dilution of toluene, ethylbenzene, 1,2,4-trimethylbenzene, and hexane in Di-2-ethylhexyl, diisoheptyl, and diisononyl phthalates. Journal of Chemical Engineering Data, 51, 1212–1215.CrossRefGoogle Scholar
  20. Bourgois, D., Vanderschuren, J., & Thomas, D. (2009). Study of mass transfer of VOCs into viscous solvents in a pilot-scale cables-bundle scrubber. Chemical Engineering Journal, 145, 446–452.CrossRefGoogle Scholar
  21. Brink, L. E. S., Tramper, J., Luyben, K. C. A. M., & Van’t Riet, K. (1988). Biocatalysis in organic media. Enzyme and Microbial Technology, 10, 736–743.CrossRefGoogle Scholar
  22. Bruce, L. J., & Daugulis, A. J. (1991). Solvent selection strategies for extractive biocatalysis. Biotechnology Progress, 61, 116–124.CrossRefGoogle Scholar
  23. Burgess, J. E., Parsons, S. A., & Stuetz, R. M. (2001). Developments in odour control and waste gas treatment biotechnology: a review. Biotechnology Advances, 19, 35–63.CrossRefGoogle Scholar
  24. Cannon, P., St Pierre, L. E., & Miller, A. A. (1960). Solubilities of hydrogen and oxygen in polydimethylsiloxanes. Journal of Chemical Engineering Data, 5, 236.CrossRefGoogle Scholar
  25. Césario, M. T., Baverloo, W. A., Tramper, J., & Beeftink, H. H. (1997). Enhancement of gas liquid mass transfer rate of apolar pollutants in the biological waste gas treatment by a dispersed organic solvent. Enzyme and Microbial Technology, 21, 578–588.CrossRefGoogle Scholar
  26. Césario, M. T., de Wit, H. L., Tramper, J., & Beeftink, H. H. (1997). Dispersed organic solvent to enhance the overall gas/water mass transfer coefficient of apolar compounds in the biological waste-gas treatment. Modeling and evaluation. Biotechnology Progress, 13, 399–407.CrossRefGoogle Scholar
  27. Césario, M. T., Brandsma, J. B., Boon, M. A., Tramper, J., & Beeftink, H. H. (1998). Ethene removal from gas by recycling a water-immiscible solvent through a packed absorber and a bioreactor. Journal of Biotechnology, 62, 105–118.CrossRefGoogle Scholar
  28. Cha, J. M., Cha, W. S., & Lee, J. H. (1999). Removal of organo-sulphur odour compounds by Thiobacillus novellus SRM, sulphur-oxidizing microorganisms. Process Biochemistry, 34, 659–665.CrossRefGoogle Scholar
  29. Clarke, K. G., & Correia, L. D. C. (2008). Oxygen transfer in hydrocarbon-aqueous dispersion and its applicability to alkane bioprocess: a review. Biochemical Engineering Journal, 39, 405–429.CrossRefGoogle Scholar
  30. Collins, L. D., & Daugulis, A. J. (1997a). Biodegradation of phenol at high initial concentration in two-phase partitioning batch and fed batch bioreactors. Biotechnology and Bioengineering, 55, 155–162.CrossRefGoogle Scholar
  31. Collins, L. D., & Daugulis, A. J. (1997b). Characterization and optimization of a two-phase partitioning bioreactor for the biodegradation of phenol. Applied Microbiology and Biotechnology, 48, 18–22.CrossRefGoogle Scholar
  32. Collins, L. D., & Daugulis, A. J. (1999a). Benzene/toluene/p-xylene degradation. Part I: solvent selection and toluene degradation in a two-phase partitioning bioreactor. Applied Microbiology and Biotechnology, 52, 354–359.CrossRefGoogle Scholar
  33. Collins, L. D., & Daugulis, A. J. (1999b). Part II. Effect of substrate interactions and feeding strategies in toluene/benzene and toluene/p-xylene fermentations in a partitioning bioreactor. Applied Microbiology and Biotechnology, 52, 360–365.CrossRefGoogle Scholar
  34. Collins, L. D., & Daugulis, A. J. (1999c). Simultaneous biodegradation of benzene, toluene and p-xylene in a two-phase partitioning bioreactor: concept demonstration and practical application. Biotechnology Progress, 15, 74–80.CrossRefGoogle Scholar
  35. Cui, H., & Turn, S. Q. (2009). Adsorption/desorption of dimethylsulfide on activated carbon modified with iron chloride. Applied Catalysis B: Environmental, 88, 25–31.CrossRefGoogle Scholar
  36. Darracq, G., Couvert, A., Couriol, C., Amrane, A., & Le Cloirec, P. (2009). Absorption and biodegradation of hydrophobic VOCs: determination of Henry’s constants and biodegradation levels. Water Science and Technology, 59, 1315–1322.CrossRefGoogle Scholar
  37. Darracq, G., Couvert, A., Couriol, C., Amrane, A., & Le Cloirec, P. (2010a). Integrated process for hydrophobic VOC treatment–solvent choice. Canadian Journal of Chemical Engineering, 88(4), 655–660.Google Scholar
  38. Darracq, G., Couvert, A., Couriol, C., Amrane, A., & Le Cloirec, P. (2010b). Kinetics of toluene and sulfur compounds removal bymeans of an integrated process involving the coupling of absorption and biodegradation. Journal of Chemical Technology and Biotechnology, 85, 1156–1161.CrossRefGoogle Scholar
  39. Darracq, G., Couvert, A., Couriol, C., Amrane, A., Thomas, D., Dumont, E., et al. (2010). Silicone oil: an effective absorbent for hydrophobic volatile organic compounds (VOC) removal. Journal of Chemical Technology and Biotechnology, 85, 309–313.CrossRefGoogle Scholar
  40. Darracq, G., Couvert, A., Couriol, C., Amrane, A., Thomas, D., Dumont, E., et al. (2012). Optimization of the volume fraction of the NAPL, silicon oil, and biodegradation kinetics of toluene and DMDS in a TPPB. International Biodeterioration and Biodegradation, 71, 9–14.CrossRefGoogle Scholar
  41. Daugulis, A. J. (2001). Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends in Biotechnology, 19, 457–462.CrossRefGoogle Scholar
  42. Daugulis, A. J., & Boudreau, N. G. (2003). Removal and destruction of high concentration of gaseous toluene in a two-phase partitioning bioreactor by Alcaligenes xylosoxidans. Biotechnology Letters, 25, 1421–1424.CrossRefGoogle Scholar
  43. De Bont, J. A. M. (1998). Solvent-tolerant bacteria in biocatalysis. Trends in Biotechnology, 16, 493–498.CrossRefGoogle Scholar
  44. De Guardia, A. (1994). Epuration de gaz comportant des composés organo-soufrés. Etude d’un procédé physico-chimique. Université de Rennes 1, ENSCR.Google Scholar
  45. Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61, 47–64.Google Scholar
  46. Deshusses, M. A. (1997). Biological waste air treatment in biofilters. Current Opinion in Biotechnology, 8, 335–339.CrossRefGoogle Scholar
  47. Devos, M., Patte, F., Rouault, J., Laffort, P., & Van Gemert, L. J. (1990). Standardized human olfactory thresholds. New York: Oxford University Press.Google Scholar
  48. Déziel, E., Commeau, Y., & Villemur, R. (1999). Two-liquid-phase bioreactors for enhanced degradation of hydrophobic/toxic compounds. Biodegradation, 10, 219–233.CrossRefGoogle Scholar
  49. Docherty, K. M., & Kulpa, C. F. (2005). Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chemistry, 7, 185–189.CrossRefGoogle Scholar
  50. Docherty, K. M., Dixon, J. K., & Kulpar, J. C. F. (2007). Biodegradation of imidazolium and pyridinium ionic liquids by an activated skudge microbial community. Biodegradation, 18, 481–493.CrossRefGoogle Scholar
  51. Dumont, E., & Delmas, H. (2003). Mass transfer enhancement of gas absorption in oil-in-water systems: a review. Chemical Engineering and Processing, 42, 419–438.CrossRefGoogle Scholar
  52. Dumont, E., Andrès, Y., & Le Cloirec, P. (2006). Mass transfer coefficients of styrene and oxygen into silicone oil emulsions in a bubble reactor. Chemical Engineering Science, 61, 5612–5619.CrossRefGoogle Scholar
  53. Dumont, E., Darracq, G., Couvert, A., Couriol, C., Amrane, A., Thomas, D., et al. (2010). Determination of partition coefficients of three volatile organic compounds (dimethylsulphide, dimethyldisulphide and toluene) in water/silicone oil mixtures. Chemical Engineering Journal, 162, 927–934.CrossRefGoogle Scholar
  54. Dumont, E., Darracq, G., Couvert, A., Couriol, C., Amrane, A., Thomas, D., et al. (2011). VOC absorption in a countercurrent packed-bed column using water/silicone oil mixtures: influence of silicone oil volume fraction. Chemical Engineering Journal, 168, 241–248.CrossRefGoogle Scholar
  55. Eaton, R. W., & Ribbons, D. W. (1982). Metabolism of dibutylphthalate and phthalate by Micrococcus sp. strain 12B. Journal of Bacteriology, 151, 48–57.Google Scholar
  56. Efroymson, R. A., & Alexander, M. (1991). Biodegradation by an arthrobacter species of hydrocarbons partitioned into an organic solvent. Applied and Environmental Microbiology, 57, 1441–1447.Google Scholar
  57. Eibes, G., Moreira, M. T., Feijo, G., Daugulis, A. J., & Lema, J. M. (2007). Operation of a two-phase partitioning bioreactor for the oxidation of anthracene by the enzyme manganese peroxidise. Chemosphere, 66, 1744–1751.CrossRefGoogle Scholar
  58. Estévez, E., Veiga, M. C., & Kennes, C. (2005). Biofiltration of waste gases with the fungi Exophilia oligosperma and Paecilomyces variotii. Applied Microbiology and Biotechnology, 67, 563–568.CrossRefGoogle Scholar
  59. Fall, R. R., Brown, J. L., & Schaeffer, T. L. (1979). Enzyme recruitment allows the biodegradation of recalcitrant branched hydrocarbons by Pseudomonas citronellis. Applied and Environmental Microbiology, 38(4), 715–722.Google Scholar
  60. Fazaelipoor, M. H., & Shojaosadati, S. A. (2002). The effect of silicone oil on biofiltration of hydrophobic compounds. Environmental Progress, 21, 221–224.CrossRefGoogle Scholar
  61. Fei, W. Y., & Bart, H. J. (2001). Predicting diffusivities in liquids by the group contribution method. Chemical Engineering and Processing, 40, 531–535.CrossRefGoogle Scholar
  62. Fewson, C. A (1991). Factors affecting the degradation hazardous recalcitrant materials. In R. F. S. o. Engineers (Ed.), Proc. Int. Symp. Environ. Biotechnol., Ostend, (Vol. 1, pp. 173–183).Google Scholar
  63. Fritsche W., & Hofrichter M. (2005). Aerobic degradation by microorganisms. In: R.G. Rehm (Ed.), Biotechnology set, 2nd Ed—Part XIb: Environmental Processes II–II Microbiological Aspects (pp. 144–167): Wiley: New York.Google Scholar
  64. Gardin, H., Lebeault, J. M., & Pauss, A. (1999). Biodegradation of xylene and butyl acetate using an aqueous-silicon oil two phase system. Biodegradation, 10, 193–200.CrossRefGoogle Scholar
  65. Ghoshal, S., Ramaswami, A., & Luthy, R. G. (1996). Biodegradation of naphthalene from coal tar and heptamethylnonane in mixed batch system. Environmental Science and Technology, 30, 1282–1291.CrossRefGoogle Scholar
  66. Guieysse, B., Cirne, M. D. D. T. G., & Mattiasson, B. (2001). Microbial degradation of phenanthrene and pyrene in a two-liquid-phase-partitioning bioreactor. Applied Microbiology and Biotechnology, 56, 796–802.CrossRefGoogle Scholar
  67. Guieysse, B., Hort, C., Platel, V., Munoz, R., Ondarts, M., & Revah, S. (2008). Biological treatment of indoor air for VOC removal: potential and challenges. Biotechnology Advances, 26, 398–410.CrossRefGoogle Scholar
  68. Hamed, T. A., Bayraktar, E., Mehmetoglu, U., & Mehmetoglu, T. (2004). The biodegradation of benzene, toluene and phenol in a two-phase system. Biochemical Engineering Journal, 19, 137–146.CrossRefGoogle Scholar
  69. Hansen, K. C., Zhou, Z., Yaws, C. L., & Aminabhavi, T. M. (1993). Determination of Henry’s law constants of organics in dilute aqueous solutions. Journal of Chemical Engineering Data, 38, 546–550.CrossRefGoogle Scholar
  70. Hartikainen, T., Martikainen, P. J., Olkkonen, M., & Ruuskanen, J. (2002). Peat biofilter in long-term experiments for removing odorous sulphur compounds. Water, Air, and Soil Pollution, 133, 335–348.CrossRefGoogle Scholar
  71. Hayachi, S., Kobayashi, T., & Honda, H. (2003). Simple and rapid cell growth assay using tetrazolium violet coloring method for screening of organic solvent tolerant bacteria. Journal of Bioscience and Bioengineering, 96, 360–363.Google Scholar
  72. Heipieper, H. J., Grit, N., Cornelissen, S., & Meinhrdart, F. (2007). Solvent-tolerant bacteria for biotransformations in two-phase fermentation system. Applied Microbiology and Biotechnology, 74, 961–973.CrossRefGoogle Scholar
  73. Hernández, M., Quijano, G., Muñoz, R., & Bordel, S. (2011). Modeling of VOC mass transfer in two-liquid phase stirred tank, biotrickling filter and airlift reactors. Chemical Engineering Journal, 172, 961–969.CrossRefGoogle Scholar
  74. Heymes, F. (2005). Traitement d’air chargé en COV hydrophobes par un procédé hybride :Absorption-Pervaporation. Université de Montpellier II.Google Scholar
  75. Heymes, F., Demoustier, P. M., Charbit, F., Fanlo, J. L., & Moulin, P. (2006). A new efficient absorption liquid to treat exhaust air loaded with toluene. Chemical Engineering Journal, 115, 225–231.CrossRefGoogle Scholar
  76. Heymes, F., Demoustier, P. M., Charbit, F., Fanlo, J. L., & Moulin, P. (2007). Treatment of gas containing hydrophobic VOCs by a hybrid absorption–pervaportion process: the case of toluene. Chemical Engineering Science, 62, 2576–2589.CrossRefGoogle Scholar
  77. Hine, J., & Weimar, J. R. D. (1965). Carbon basicity. Journal of the American Chemical Society, 87, 3387–3396.CrossRefGoogle Scholar
  78. Huddleston, J. G., Visser, A. E., Reichert, W. M., Willauer, H. D., Broker, G. A., & Rogers, R. D. (2001). Characterization and comparaison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry, 3, 156–164.CrossRefGoogle Scholar
  79. Iliuta, M. C., & Larachi, F. (2005a). Gas liquid partition coefficients and Henry’s law constants of DMS in aqueous solutions of Fe(II) chelate complexes using the static headspace method. Journal of Chemical & Engineering Data, 50, 1700–1705.CrossRefGoogle Scholar
  80. Iliuta, M. C., & Larachi, F. (2005b). Solubility of dimethyldisulfide (DMDS) in aqueous solutions of Fe(III) complexes of trans-1,2-cyclohexanediaminetetraacetic acid (CDTA) using the static headspace method. Fluid phase Equilibria, 233, 184–189.CrossRefGoogle Scholar
  81. Inoue, A., & Horikoshi, K. (1991). Estimation of solvent-tolerance of bacteria by the solvent parameter log P. Journal of Fermentation and Bioengineering, 71, 194–196.CrossRefGoogle Scholar
  82. Janikowski, T. B., Velicogna, D., Punt, M., & Daugulis, A. (2002). Use of a two-phase partitioning bioreactor for degrading polycyclic aromatic hydrocarbons by Sphingomonas sp. Journal of Applied Microbiology and Biotechnology, 59, 368–376.CrossRefGoogle Scholar
  83. Jimenez, I. Y., & Bartha, R. (1996). Solvent-augmented mineralization of pyrene by a Mycobacterium sp. Applied and Environmental Microbiology, 62, 2311–2316.Google Scholar
  84. Kennes, C., Rene, E. R., & Veiga, M. C. (2009). Bioprocess for air pollution control. Journal of Chemical Technology and Biotechnology, 84, 1419–1436.CrossRefGoogle Scholar
  85. Kester, A. S., & Foster, J. W. (1963). Diterminal oxidation of long chain alkanes by bacteria. Journal of Bacteriology, 85, 859–869.Google Scholar
  86. Kirkwood, K. M., Chernik, P., Foght, J. M., & Gray, M. R. (2008). Aerobic biotransformation of decalin (decahydronaphtalene) by Rhodococcus spp. Biodegradation, 19, 785–794.CrossRefGoogle Scholar
  87. Koma, D., Hasumi, F., Yamamoto, E., Ohta, T., Chung, S. Y., & Kumo, M. (2001). Biodegradation of long-chain n-paraffins from waste oil of car engine by Acinetobacter sp. Journal of Bioscience and Bioengineering, 91, 95–96.Google Scholar
  88. Koma, D., Sakashita, Y., Kubota, K., Fujii, Y., Hasumi, F., Chung, S. Y., et al. (2003). Degradation of car engine base oil by Rhodococcus sp. NDKK48 and Gordonia s.p NDKY76A. Bioscience, Biotechnology, and Biochemistry, 67, 1590–1593.CrossRefGoogle Scholar
  89. Laane, C., Boeren, S., & Vos, K. (1985). On optimizing organic solvents in multi-liquid-phase biocatalysis. Trends in Biotechnology, 3, 251–252.CrossRefGoogle Scholar
  90. Laane, C., Boeren, S., Vos, K., & Veeger, C. (1987). Rules for optimization of biocatalysis in organic solvents. Biotechnology and Bioengineering, 30, 81–87.CrossRefGoogle Scholar
  91. Le Cloirec, P. (1998). Les composés organiques volatils (COV) dans l’environnement. Paris: Lavoisier TEC&DOC.Google Scholar
  92. Lee, E. H., & Cho, K. S. (2008). Characterization of cyclohexane and hexane degradation by Rhodococcus sp. EC1. Chemosphere, 71, 1738–1744.CrossRefGoogle Scholar
  93. Liang, D. W., Zhang, T., Fang, H. H. P., & He, J. (2008). Phtalates biodegradation in the environment. Applied Microbiology and Biotechnology, 80, 183–198.CrossRefGoogle Scholar
  94. Mackay, D., & Shiu, W. Y. (1981). A critical review of Henry’s law constants for chemicals of environmental interest. Journal of Physical and Chemical Reference Data, 10, 1175–1199.CrossRefGoogle Scholar
  95. Mackay, D., Shiu, W. Y., & Sutherland, R. P. (1979). Determination of air–water Henry’s law constants for hydrophobic pollutants. Environmental Science and Technology, 13, 333–337.CrossRefGoogle Scholar
  96. MacLeod, C. T., & Daugulis, A. J. (2003). Biodegradation of polycyclic aromatic hydrocarbons in two phase partitioning bioreactor in the presence of a bioavailable solvent. Applied Microbiology and Biotechnology, 62, 291–296.CrossRefGoogle Scholar
  97. MacLeod, C. T., & Daugulis, A. J. (2005). Interfacial effects in a two-phase partitioning bioreactor: degradation of polycyclic aromatic hydrocarbons (PAHs) by a hydrophobic Mycobacterium. Process Biochemistry, 40, 1799–1805.CrossRefGoogle Scholar
  98. MacMillan, J. D., & Wang, D. I. C. (1987). Enhanced oxygen transfer using oil-in-water dispersion. Annals of the New York Academy of Sciences, 506, 569–582.CrossRefGoogle Scholar
  99. Mahanty, B., Parkshirajan, K., & Dasu, V. V. (2008). Biodegradation of pyrene by Mycobacterium frederiksbergense in a two-phase partitioning bioreactor system. Bioresource Technology, 99, 2694–2698.CrossRefGoogle Scholar
  100. Mahanty, B., Pakshirajan, K., & Venkata Dasu, V. (2010). A two liquid phase partitioning bioreactor system for the biodegradation of pyrene: Comparative evaluation and cost–benefit analysis. Journal of Chemical Technology and Biotechnology, 85(3), 349–355.CrossRefGoogle Scholar
  101. Malinowski, J. J. (2001). Two-phase partitioning bioreactors in fermentation technology. Biotechnology Advances, 19, 525–538.CrossRefGoogle Scholar
  102. Marcoux, J., Déziel, E., Villemur, R., Lépine, F., Bisaillon, J. G., & Beaudet, R. (2000). Optimization of high molecular weight polycyclic aromatic hydrocarbons’ degradation in a two-liquid-phase bioreactor. Journal of Applied Microbiology, 88, 655–662.CrossRefGoogle Scholar
  103. Matsumoto, M., Mochiduki, K., & Kondo, K. (2004). Toxicity of ionic liquids and organic solvents to lactic acid-producing bacteria. Journal of Bioscience and Bioengineering, 98, 344–347.Google Scholar
  104. Miller, J. M., & Allen, D. G. (2004). Transport of hydrophobic pollutants throught biofilms in biofilters. Chemical Engineering Science, 59, 3515–3525.CrossRefGoogle Scholar
  105. Mohseni, M., & Allen, D. G. (2000). Biofiltration of hydrophilic and hydrophobic volatile organic compounds. Chemical Engineering Science, 55, 1545–1558.CrossRefGoogle Scholar
  106. Montes, M. C., Veiga, M. C., & Kennes, C. (2011). Effect of oil concentration and residence time on the biodegradation of α-pinene vapours in two-liquid phase suspended-growth bioreactors. Journal of Biotechnology. doi: 10.1016/j.jbiotec.2011.1007.1019.
  107. Muñoz, R., Arriaga, S., Hernandez, S., Guieysse, B., & Revah, S. (2006). Enhanced hexane biodegradation in a two phase partitioning bioreactor: overcoming pollutant transport limitations. Process Biochemistry, 41, 1614–1619.CrossRefGoogle Scholar
  108. Muñoz, R., Villaverde, S., Guieysse, B., & Revah, S. T. (2007). Two-phase partitioning bioreactor for treatment of volatile organic compounds. Biotechnology Advances, 25, 410–422.CrossRefGoogle Scholar
  109. Nakahara, T., Erickson, L. E., & Gutierrez, J. R. (1977). Characteristics of hydrocarbons uptake in cultures with two liquid phases. Biotechnology and Bioengineering, 19, 9–25.CrossRefGoogle Scholar
  110. Nalli, S., Cooper, D. G., & Nicell, J. A. (2006). Metabolites from the biodegradation of di-ester plasticizers by Rhodococcus rhodochrous. Science of the Total Environment, 366, 286–294.CrossRefGoogle Scholar
  111. Nendza, M. (2007). Hazard assessment of silicone oils (polydimethylsiloxanes, PDMS) used in antifouling-/foul-release-products in the marine environment. Marine Pollution Bulletin, 54, 1190–1196.CrossRefGoogle Scholar
  112. Nhi-Cong, L. T., Mikolash, A., Klenk, H. P., & Schauer, F. (2009). Degradation of the multiple branched alkane 2,6,10,14-tetramethyl-pentadecane (pristine in Rhodococcus ruber and Mycobacterium neoaurum). International Biodeterioration & Biodegradation, 63, 201–207.CrossRefGoogle Scholar
  113. Nielsen, D. R., Daugulis, A. J., & Mclellan, P. J. (2005). Transient performance of a two-phase partitioning bioscrubber treating a benzene-contamination gas stream. Environmental Science and Technology, 39, 8971–8977.CrossRefGoogle Scholar
  114. Ogino, H., Miyamoto, K., Yasuda, M., Ishimi, K., & Ishikawa, H. (1999). Growth of organic solvent-tolerant Pseudomonas aeruginosa LST-03 in the presence of various organic solvents and production of lipolytic enzyme in the presence of cyclohexane. Biochemical Engineering Journal, 4, 1–6.CrossRefGoogle Scholar
  115. Oliveira, F. J. S., & De França, F. P. (2005). Increase in removal of polycyclic aromatic hydrocarbons during bioremediation of crude oil-contaminated sandy soil. Applied Biochemistry and Biotechnology, 121–124, 593–603.CrossRefGoogle Scholar
  116. Osborne, S. J., Leaver, J., Turner, M. K., & Dunill, P. (1990). Correlation of biocatalytic activity in an organic-aqueous two-liquid phase system with solvent concentration in the cell membrane. Enzyme and Microbial Technology, 12, 281–291.CrossRefGoogle Scholar
  117. Osswald, P., Baveye, P., & Block, J. C. (1996). Bacterial influence on partitioning rate during the biodegradation of styrene in a biphasic aqueous-organic system. Biodegradation, 7, 297–302.CrossRefGoogle Scholar
  118. Ottengraf, S. P. P., Meesters, J. J. P., Van den Oever, A. H. C., & Rozema, H. R. (1986). Biological of volatile xenobiotics compounds in biofilters. Bioprocess and Biosystems Engineering, 1, 61–69.Google Scholar
  119. Pernafeta-Boldù, F. X., Illa, J., Van Groenestijn, J. W., & Flotats, X. (2008). Influence of the synthetic packing materials on the gas dispersion and biodegradation kinetics in fungal air biofilters. Applied Microbiology and Biotechnology, 79, 319–327.CrossRefGoogle Scholar
  120. Poddar, T. K., & Sirkar, K. K. (1996). Henry’s constant for selected volatile organic compounds in high-boiling oils. Journal of Chemical & Engineering Data, 41, 1329–1332.CrossRefGoogle Scholar
  121. Poddar, T. K., Majumdar, S., & Sirkar, K. K. (1996). Removal VOCs from air by membrane based absorption and stripping. Journal of Membrane Science, 120, 221–237.CrossRefGoogle Scholar
  122. Quijano, G., Hernandez, M., Thalasso, F., Muñoz, R., & Villaverde, S. (2009). Two-phase partitioning bioreactor in environment biotechnology. Applied Microbiology and Biotechnology, 84, 829–846.CrossRefGoogle Scholar
  123. Quijano, G., Couvert, A., & Amrane, A. (2010). Ionic liquids: applications and future trends in bioreactor technology. Bioresource Technology, 101, 8923–8930.CrossRefGoogle Scholar
  124. Quijano, G., Rocha-Ríos, J., Hernández, M., Villaverde, S., Revah, S., Muñoz, R., et al. (2010). Determining the effect of solid and liquid vectors on the gaseous interfacial area and oxygen transfer rates in two-phase partitioning bioreactors. Journal of Hazardous Materials, 175, 1085–1089.CrossRefGoogle Scholar
  125. Quijano, G., Couvert, A., Amrane, A., Darracq, G., Couriol, C., Le Cloirec, P., et al. (2011a). Potential of ionic liquids for VOC absorption and biodegradation in multiphase systems. Chemical Engineering Science, 66, 2707–2712.CrossRefGoogle Scholar
  126. Quijano, G., Couvert, A., Amrane, A., Darracq, G., Couriol, C., Le Cloirec, P., et al. (2011b). Toxicity and biodegradability of ionic liquids: new perspectives towards whole-cell biotechnological applications. Chemical Engineering Journal, 174, 27–32.CrossRefGoogle Scholar
  127. Rehmann, L., & Daugulis, A. J. (2007). Biodegradation of biphenyl in a solid–liquid two-phase partitioning bioreactor. Biochemical Engineering Journal, 36, 195–201.CrossRefGoogle Scholar
  128. Revah, S., & Morgan-Sagastume, J. M. (2005). Methods of odor and VOC control. In A. Singh & Z. Shareefdeen (Eds.), Biotechnology for odour and air pollution control (pp. 29–63). Heidelberg: Springer.CrossRefGoogle Scholar
  129. Robbins, G. A., Wang, S., & Stuart, J. D. (1993). Using the static headspace method to determine Henry’s law constant. Analytical Chemistry, 65, 3113–3118.CrossRefGoogle Scholar
  130. Rodriguez, M., Klason, T. K., & Davison, B. H. (2001). Enhancement of the conversion of toluene by Pseudomonas putida F-1 using organic cosolvents. Applied Biochemistry and Biotechnology, 92–93, 195–204.CrossRefGoogle Scholar
  131. Rols, J. L., Condoret, J. S., Fonade, C., & Goma, G. (1990). Mechanisms of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors. Biotechnology and Bioengineering, 35, 427–435.CrossRefGoogle Scholar
  132. Rontani, J. F., & Giusti, G. (1986). Study of the biodegradation of poly-branched alkanes by a marine bacterial community. Marine Chemistry, 20, 197–205.CrossRefGoogle Scholar
  133. Rontani, J. F., Bonin, P. C., & Volkman, J. K. (1999). Biodegradation of free phytol by bacterial communities isolated from marine sediments under aerobic and denitrifying conditions. Applied and Environmental Microbiology, 65, 5484–5492.Google Scholar
  134. Rontani, J. F., Mouzdahir, A., Michotey, V., & Bonin, P. C. (2002). Aerobic and anaerobic metabolism of squalene by a denitrifying bacterium isolated from marine sediment. Archives of Microbiology, 178, 279–287.CrossRefGoogle Scholar
  135. Roustan, M. (2003). Transfert gaz-liquide dans les procédés de traitement des eaux et des effluents gazeux. Paris: Lavoisier TEC&DOC.Google Scholar
  136. Sáez-Navarrete, C., Gelmi, C. A., Reyes-Bozo, L., & Godoy-Faúndez, A. (2008). An exploratory study of peat and sawdust as enhancers in the (bio)degradation on n-dodecane. Biodegradation, 19, 527–534.CrossRefGoogle Scholar
  137. Sardessai, Y., & Bhosle, S. (2002). Tolerance of bacteria to organic solvents. Research in Microbiology, 153, 263–268.CrossRefGoogle Scholar
  138. Scheibel, E. G. (1954). Liquid diffusivities and viscosity of gases. Industrial and Engineering Chemistry, 46, 2007–2008.CrossRefGoogle Scholar
  139. Seubert, W. (1960). Degradation of isoprenpoid compounds by microorganisms. I. Isolation and characterization of an isoprenoid-degrading bacterium, Pseudomonas citronellolis n. sp. Journal of Bacteriology, 79, 426–434.Google Scholar
  140. Shu, C. H., & Chen, C. K. (2009). Enhanced removal of dimethyl sulphide from a waste gas stream using a bioreactor inoculated with Micobacterium sp. NTUT26 and Pseudomonas putida. Journal of Industrial Microbiology and Biotechnology, 36, 95–104.CrossRefGoogle Scholar
  141. Sikkema, J., de Bont, J. A., & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews, 59, 201–222.Google Scholar
  142. Singh, D., & Fulekar, M. H. (2010). Benzene bioremediation using cow dung microflora in two phase partitioning bioreactor. Journal of Hazardous Materials, 175, 336–343.CrossRefGoogle Scholar
  143. Singh, L., Ram, M. S., Agarwal, M. K., & Alam, S. I. (2000). Characterization of Aeromonas hydrophila strains and their evaluation for biodegradation of night soil. Journal of Microbiology and Biotechnology, 16, 625–630.CrossRefGoogle Scholar
  144. Singh, A., Shareefdeen, Z., & Ward, O. P. (2005). Biotechnology for odour and air pollution control. In: Bioscrubber Technology. Springer: Berlin.Google Scholar
  145. Smeets, G. (2002). Réduire les émanations de COV dans l’atmosphère: Quelles solutions techniques?, Euroform, Cergy Pontoise.Google Scholar
  146. Solano-Serena, F., Marchal, R., Heiss, S., & Vandecasteele, J. P. (2004). Degradation of isooctane by Mycobacterium austroafricanum IFP 2173: Growth and catabolic pathway. Journal of Applied Microbiology, 97, 629–639.CrossRefGoogle Scholar
  147. Staudinger, J., & Roberts, P. V. (2000). A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions. Chemosphere, 44, 561–576.CrossRefGoogle Scholar
  148. Tomei, M. C., Annesini, R. S., & Daugulis, A. J. (2008). Biodegradation of 4-nitrophenol in a two-phase sequencing batch reactor: concept demonstration, kinetics and modelling. Applied Microbiology and Biotechnology, 80, 1105–1112.CrossRefGoogle Scholar
  149. Trinci, A. P. J. (1969). A kinetic study of the growth of Aspergillus nidulans and other fungi. Journal of General Microbiology, 57, 11–24.CrossRefGoogle Scholar
  150. Tudose, R. Z., & Apreotesei, G. (2001). Mass transfer coefficients in liquid–liquid extraction. Chemical Engineering and Processing, 40, 447–485.CrossRefGoogle Scholar
  151. Van der Meer, J. R., de Vos, W. M., Harayama, S., & Zehnder, A. J. B. (1992). Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiological Reviews, 56, 677–694.Google Scholar
  152. Van der Werf, M. J., Swarts, H. J., & de Bont, J. A. M. (1999). Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Applied and Environmental Microbiology, 65, 2092–2102.Google Scholar
  153. Vannek, P., Beekman, M., de Saeyer, N., D’Haene, S., & Verstraete, W. (1995). Biodegradation of polycyclic aromatic hydrocarbons in a two-liquid phase system. In: R. R. Hinchee, D. B. Anderson, & R. E. Hoeppel (Eds.). Bioremediation of Recalcitrant Organics Vol. 7. Batelle Press: Columbus, OH. pp. 55–62Google Scholar
  154. Vieira, P. A., Vieira, R. B., de Franc, F. P., & Cardoso, V. L. (2007). Biodegradation of effluent contaminated with diesel fuel and gasoline. Journal of Hazardous Materials, 140, 52–59.CrossRefGoogle Scholar
  155. Vrionis, H. A., Kropinski, A. M., & Daugulis, A. J. (2002). Enhancement of a two-phase partitioning bioreactor system by modification of the microbial catalyst: demonstration of concept. Biotechnology and Bioengineering, 79, 587–594.CrossRefGoogle Scholar
  156. Vuong, M. D., Couvert, A., Couriol, C., Amrane, A., Le Cloirec, P., & Renner, C. (2009). Determination of the Henry’s constant and the mass transfer rate of VOCs in solvents. Chemical Engineering Journal, 150, 426–443.CrossRefGoogle Scholar
  157. Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews, 99, 2071–2084.CrossRefGoogle Scholar
  158. Wilke, C. R., & Chang, P. (1955). Correlation of diffusion coefficients in dilute solutions. AICHE Journal, 1, 264–270.CrossRefGoogle Scholar
  159. Woodley, J. M., Brazier, A. J., & Lilly, M. G. (1991). Lewis cell studies to determine reactor design data for two-liquid-phase bacterial and enzymatic reactions. Biotechnology and Bioengineering, 37, 133–140.CrossRefGoogle Scholar
  160. Xia, B., Majumbar, S., & Sirkar, K. K. (1999). Regenerative oil scrubbing of volatile organic compounds from a gas stream in hollow fibber membrane devices. Industrial and Engineering Chemistry Research, 38, 3462–3472.CrossRefGoogle Scholar
  161. Yang, Z., & Pan, W. (2005). Ionic liquids: green solvents for non aqueous biocatalysis. Enzyme and Microbial Technology, 37, 19–28.CrossRefGoogle Scholar
  162. Yeom, S. H., & Daugulis, A. J. (2000). Treatment of high concentration gaseous benzene stream using a novel bioreactor system. Biotechnology Letters, 22, 1747–1751.CrossRefGoogle Scholar
  163. Yeom, S. H., & Daugulis, A. J. (2001a). Development of a novel bioreactor system for treatment of gaseous benzene. Biotechnology and Bioengineering, 72, 156–165.CrossRefGoogle Scholar
  164. Yeom, S. H., & Daugulis, A. J. (2001b). A two-phase partitioning bioreactor system for treating benzene-contaminated soil. Biotechnology Letters, 23, 467–473.CrossRefGoogle Scholar
  165. Zhang, Y., Liss, S. N., & Allen, D. G. (2007). Enhancing and modelling the biofiltration of dimethyl sulphide under dynamic methanol addition. Chemical Engineering Science, 62, 2474–2781.CrossRefGoogle Scholar
  166. Zhang, F., Ni, Y., Sun, Z., Zheng, P., Lin, W., Zhu, P., et al. (2008). Asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to ethyl(s)-4-chloro-3-hydroxybutanoate catalyzed by Aureobasidium pullulans in an aqueous/ionic liquid biphase System. Chinese Journal of Catalysis, 29, 577–582.CrossRefGoogle Scholar
  167. Zhao, D., Liao, Y., & Zhang, Z. (2007). Toxicity of ionic liquids. Clean, 35, 42–48.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Guillaume Darracq
    • 1
    • 2
  • Annabelle Couvert
    • 1
    • 2
  • Catherine Couriol
    • 1
    • 2
  • Abdeltif Amrane
    • 1
    • 2
    Email author
  • Pierre Le Cloirec
    • 1
    • 2
  1. 1.Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226Rennes Cedex 7France
  2. 2.Université européenne de BretagneRennesFrance

Personalised recommendations