Skip to main content
Log in

Sorption and Desorption of Red 5 and Yellow 6 by a Fe-Zeolitic Tuff

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The capacity of an iron-modified zeolite was evaluated for the removal of two dyes (red 5 and yellow 6) use in foodstuff; the regeneration of the dye-saturated materials was also considered. The zeolitic material (clynoptilolite type) was treated with sodium chloride (Na-Ze) and then with ferric chloride (Fe-Ze). The sorption kinetics and isotherms were evaluated, considering the effect of pH on the sorption processes. Sorption–regeneration cycles using iron-modified zeolitic material were performed. The sorption kinetics showed that the sodium-modified zeolitic material removed neither red 5 nor yellow 6 dyes, while the iron-modified zeolitic material removed both dyes; the equilibrium time was reached in 48 h for yellow 6, and it was almost reached in the same time for red 5, the removal percentage for red 5 was 89.4 % and for yellow 6 was 96.7 %. The experimental data showed best adjustment to the pseudo-first-order model (Lagergren), which is based on a superficial reaction. The sorption capacities obtained by the sorption isotherms were 1.6 and 1.7 mg/g for red 5 and yellow 6, respectively. The experimental data were best adjusted to the Langmuir–Freundlich model which indicates that the sorption takes place on a heterogeneous material. It was also observed that the sorption capacities increase as the pH decreases. The results on the desorption processes showed that the best regenerator agent was Fenton’s reagent; the capacities increased in each sorption–regeneration cycle using this reagent; for the red 5, the sorption percentage was 73.6 % in the first cycle and 96.3 % in the third cycle and for yellow 6, the removal percentage was 66.7 % in the first cycle and 80.5 % in the second.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abou-Mesalam, M. M. (2004). Applications of inorganic ion exchangers: II-adsorption of some heavy metal ions from their aqueous waste solution using synthetic iron III titanate. Adsorption, 10, 87.

    Article  CAS  Google Scholar 

  • Acemioglu, B. (2005). Batch kinetic study of sorption of methylene blue by perlite. Chemical Engineering Journal, 106, 73.

    Article  CAS  Google Scholar 

  • Allen, S. J., & Koumanova, B. (2005). Decolorisation of water/wastewater using adsorption (review). Journal of the University of Chemical Technology and Metallurgy, 40, 175.

    CAS  Google Scholar 

  • Chaari, I., Feki, M., Medhioub, M., Bouzid, J., Fakhfakh, E., & Jamoussi, F. (2009). Adsorption of textile dye Indathrene Blue RS (C.I. Vat Blue 4) from aqueous solutions onto smectite-rich clayey rock. Journal of Hazardous Materials, 172, 1623.

    Article  CAS  Google Scholar 

  • Chan-Li, H., Yu-Wen, L., Chii-Chang, H., Yao-Hui, H., & Chuh-Yung, C. (2007). Adsorption kinetic, thermodynamic and desorption studies of C. I. Reactive black 5 on a novel photoassisted Fenton catalyst. Dyes and Pigments, 75, 130.

    Article  Google Scholar 

  • Choy, K. K. H., McKay, G., & Porter, J. F. (1999). Sorption of acid dyes from effluents using activated carbon. Resources, Conservation and Recycling, 27, 57.

    Google Scholar 

  • Cortés, R., Martínez, V., & Solache, M. (2004). Evaluation of natural and surfactant-modified zeolites in the removal of cadmium from aqueous solutions. Separation Science and Technology, 39, 2711.

    Article  Google Scholar 

  • Dhaouadi, H., & M’Henni, F. (2008). Textile mill effluent decolorization using crude dehydrated sewage sludge. Chemical Engineering Journal, 138, 111.

    Article  CAS  Google Scholar 

  • Dogan, K. (2007). Modeling the mechanism, equilibrium and kinetics for the adsorption of acid orange 8 onto surfactant-modified clinoptilolite: the application of nonlinear regression analysis. Dyes and Pigments, 74, 659.

    Article  Google Scholar 

  • Doula, M. (2006). Synthesis of a clinoptilolite-Fe system with high Cu sorption capacity. Chemosphere, 67, 731.

    Article  Google Scholar 

  • Eren, E. (2009). Investigation of a basic dye removal from aqueous solution onto chemically modified Unye bentonite. Journal of Hazardous Materials, 166, 88.

    Article  CAS  Google Scholar 

  • Georgieva, A., Pishev, D., & Veleva, S. (2008). Investigation on applying natural sorbents for decolourisation of dye solutions. Journal of University of Chemical Technology and Metallurgy, 43, 69.

    CAS  Google Scholar 

  • Gutiérrez-Segura, E., Solache-Ríos, M., & Colín-Cruz, A. (2009). Sorption of indigo carmine by a Fe-zeolitic tuff and carbonaceous material from pyrolyzed sewage sludge. Journal of Hazardous Materials, 170, 1227.

    Article  Google Scholar 

  • Han, R., Zhang, J., Han, P., Wang, Y., Zhao, Z., & Tang, M. (2009). Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite. Chemical Engineering Journal, 145, 496.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (2002). Application of kinetic models to the sorption of copper (II) on to peat. Adsorption Science and Technology, 20, 797.

    Article  CAS  Google Scholar 

  • Ho, Y. S., Chiu, W. T., Hsu, C. S., & Huang, C. T. (2004). Sorption of lead ions from aqueous solution using tree fern as a sorbent. Hydrometallurgy, 73, 55.

    Article  CAS  Google Scholar 

  • Jin, X., Jiang, M., Shan, X., Pei, Z., & Chen, Z. (2008). Adsorption of methylene blue and orange II onto unmodified and surfactant-modified zeolite. Journal of Colloid and Interface Science, 328, 243.

    Article  CAS  Google Scholar 

  • Kallo, D. (2001). Applications of natural zeolites in water and wastewater treatment. In: Bish, D.L., & Ming, D.W. (Eds.), Natural zeolites: occurrence, properties, applications. Washington, DC: Mineralogical Society of America, pp. 519–550.

  • Lee, J. W., Choi, S. P., Thiruvrnkatachari, R., Shim, W. G., & Moon, H. (2006). Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes and Pigments, 69, 196.

    Article  CAS  Google Scholar 

  • Liang, Z., & Ni, J. (2009). Improving the ammonium ion uptake onto natural zeolite by using an integrated modification process. Journal of Hazardous Materials, 166, 52.

    Article  CAS  Google Scholar 

  • Mumpton, F. A., & Orsmy, W. C. (1976). Morphology of zeolites in sedimentary rocks by scanning electron microscopy. Clays and Clay Minerals, 24, 1.

    Article  CAS  Google Scholar 

  • Nandi, B., Goswami, A., & Purkait, M. K. (2009). Adsorption characteristics of brilliant green dye on kaolin. Journal of Hazardous Materials, 161, 387.

    Article  CAS  Google Scholar 

  • Otero, M., Rozada, F., Calvo, L. F., García, A. I., & Morán, A. (2003). Elimination of organic water pollutants using adsorbents obtained from sewage sludge. Dyes and Pigments, 57, 55.

    Article  CAS  Google Scholar 

  • Ozdemir, O., Armagan, B., Turan, M., & Çelik, M. S. (2004). Comparison of the adsorption characteristics of azo-reactive dyes on mezoporous minerals. Dyes and Pigments, 62, 49.

    Article  CAS  Google Scholar 

  • Pengthamkeerati, P., Satapanajaru, T., & Singchan, O. (2008). Sorption of reactive dye from aqueous solution on biomass fly ash. Journal of Hazardous Materials, 153, 1149.

    Article  CAS  Google Scholar 

  • Pierce, J. (1994). Color in textile effluents: the origins of problem. Journal of Society of Dyers Color, 110, 131.

    Article  CAS  Google Scholar 

  • Qiu, M., Qian, C., Xu, J., Wu, J., & Wang, G. (2009). Studies on the adsorption of dyes into clinoptilolite. Desalination, 243, 286.

    Article  CAS  Google Scholar 

  • Rathinam, A., Jonnalagadda, R., & Balachandran, U. (2007). Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis. Journal of Hazardous Materials, 142, 68.

    Article  Google Scholar 

  • Runping, H., Yi, W., Weihua, Z., Yuanfeng, W., & Jie, S. (2007). Comparison of linear and nonlinear analysis in estimating the Thomas model parameters for methylene blue adsorption onto natural zeolite in fixed-bed column. Journal of Hazardous Materials, 145, 331.

    Article  Google Scholar 

  • Sánchez, M., Dorado, M., Hoyo, C., & Rodríguez, M. (2008). Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays. Journal of Hazardous Materials, 150, 115.

    Article  Google Scholar 

  • Sanghi, R., & Bhattacharya, B. (2002). Review on decolorisation of aqueous dye solutions by low cost adsorbents. Color Technology, 118, 256.

    Article  CAS  Google Scholar 

  • Slokar, Y. M., & Majcen Le Marechal, A. (1998). Methods of decoloration of textile wastewaters. Dyes and Pigments, 37, 335.

    Article  CAS  Google Scholar 

  • Solache-Ríos, M. J., Villalva-Coyote, R., & Díaz-Nava, M. C. (2010). Sorption and desorption of remazol yellow by a Fe-zeolitic tuff. Journal of the Mexican Chemical Society, 54, 59.

    Google Scholar 

  • Torres-Pérez, J., Solache-Ríos, M., & Colín-Cruz, A. (2008). Sorption and desorption of dye remazol yellow onto a Mexican surfactant-modified clinoptilolite-rich tuff and a carbonaceous material from pyrolysis of sewage sludge. Water, Air, and Soil Pollution, 187, 303.

    Article  Google Scholar 

  • Trgo, M., & Perić, J. (2003). Interaction of the zeolitic tuff with Zn-containing simulated pollutant solutions. Journal of Colloid and Interface Science, 260, 166.

    Article  CAS  Google Scholar 

  • Tsitsishvili, G. V., Andronikashvili, T. G., Kirov, G. N., & Filizova, L. D. (1992). Natural zeolites (p. 290). New York: Ellis Horwood.

    Google Scholar 

  • Vimonses, V., Lei, S., Jin, B., Chow, C., & Saint, C. (2009). Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay minerals. Chemical Engineering Journal, 156, 11.

    Google Scholar 

  • Wang, S., & Peng, Y. (2010). Review. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156, 11.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge to Enrique Torres Moye for the mineral samples and the financial support from DGEST project 4388.11-P and CONACYT project 131174Q.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Solache-Ríos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salinas-Hernández, C., Díaz-Nava, M.C. & Solache-Ríos, M. Sorption and Desorption of Red 5 and Yellow 6 by a Fe-Zeolitic Tuff. Water Air Soil Pollut 223, 4959–4968 (2012). https://doi.org/10.1007/s11270-012-1250-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1250-1

Keywords

Navigation