Skip to main content
Log in

Treatment of Total Dissolved Solids from Plastic Industrial Effluent by Halophytic Plants

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Eight halophytic plant species, Avicennia marina, Avicennia alba, Bruguiera gymnorrhiza, Lumnitzera racemosa, Rhizophora mucronata, Rhizophora apiculata, Suaeda maritima, and Xylocarpus moluccensis were evaluated for the removal ability of total dissolved solids (TDS) from plastic industrial effluent. All halophytic plants could tolerate and survive when grown in wastewater with high TDS. Among the test plants, S. maritima showed the highest TDS removal capability and was selected for further study. S. maritima had ability not only for TDS removal, but also for reduction of pH, electrical conductivity, and salinity from wastewater effluent under soil conditions. S. maritima did not exhibit symptoms such as necrosis and leaf tip burn during the experimental period. These results indicated that S. maritima has tolerance to high TDS and salinity. However, S. maritima responded to high TDS stress by producing proline and total sugar in the roots, stems, and leaves which indicated that this plant can adapt to wastewater with high TDS. In addition, silicon (Si) and calcium (Ca) were increased in the leaves due to plant stress from TDS. Therefore, S. maritima is suitable halophytic plants for treatment of TDS contaminated wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amini, F., & Ehsanpour, A. A. (2005). Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycoersicon esculentum Mill.) cultivars under in vitro salt stress. American Journal of Biochemistry and Biotechnology, 1, 204–208.

    Article  Google Scholar 

  • APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington DC, USA: American Public Health Association.

    Google Scholar 

  • Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166, 3–16.

    Article  CAS  Google Scholar 

  • Basha, C. A., Ghosh, P. K., & Gajalakshmi, G. (2008). Total dissolved solids removal by electrochemical ion exchange (EIX) process. Electrochimical Acta, 54, 474–483.

    Article  CAS  Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid dertermination of free proline for water-stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Dipu, S., Anju, A., Kumar, V., & Thanga, S. G. (2010). Phytoremediation of dairy effluent by constructed wetland technology using wetland macrophytes. Global Journal of Environmental Research, 4, 90–100.

    CAS  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  • Epstein, E. (1999). Silicon. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 641–644.

    Article  CAS  Google Scholar 

  • Epstein, E. (2001). Chapter 1 silicon in plant: facts vs. concepts. Studies in Plant Science, 8, 1–15.

    Article  CAS  Google Scholar 

  • Ezawa, S., & Tada, Y. (2009). Identification of salt tolerance genes from the mangrove plant Bruguiera gymnorhiza using Agrobacterium fuctional screening. Plant Science, 176, 272–278.

    Article  CAS  Google Scholar 

  • Flowers, T. J., & Hall, J. L. (1978). Salt tolerance in the halophyte, Suaeda maritima (L.) Dum.: the influence of the salinity of the culture solution on the content of various organic compounds. Annals of Botany, 42, 1057–1063.

    CAS  Google Scholar 

  • Khosravi, M., Taghi Ganji, M., & Rakhshaee, R. (2005). Toxic effect of Pb, Cd, Ni and Zn on Azolla filiculoides in the International Anzali Wetland. International journal of Environmental Science and Technology, 2, 35–40.

    CAS  Google Scholar 

  • Khosravinejad, F., Heydari, R., & Farboodnia, T. (2009). Effect of salinity on organic solutes contents in barley. Pakistan Journal of Biological Sciences, 12, 158–162.

    Article  CAS  Google Scholar 

  • Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444, 139–158.

    Article  CAS  Google Scholar 

  • Ministry of Industry in Industrial Effluent Standard. (1996). Ministry of Industry, Bangkok, Thailand.

  • Misha, A., Yadav, A., Agaiwal, M., & Bajipai, M. (2004). Fenugreek mucilage for solid removal from tannery effluent. Reactive and Functional Polymers, 59, 99–104.

    Article  Google Scholar 

  • Park, J., Okita, T. W., & Edwards, G. E. (2009). Salt tolerant mechanisms in single-cell C4 species Bienertia sinuspersici and Suaeda aralocaspica (Chenopodiaceae). Plant Science, 176, 616–626.

    Article  CAS  Google Scholar 

  • Prokop'ev, E. P. (2001). Ecology of plants (p. 370). Tomsk: Tomskij gosudarstvennyj universitet.

    Google Scholar 

  • Ridge, I. (2002). Plants (1st ed.). New York: Oxford.

    Google Scholar 

  • Romero-Aranda, R., Soria, T., & Cuartero, J. (2001). Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Science, 160, 265–272.

    Article  CAS  Google Scholar 

  • Shu, L. Z., & Liu, Y. H. (2001). Effect of silicon on growth of maize seedling under salt stress. Agro-environmental Protection, 20, 38–40.

    Google Scholar 

  • Thiery, L., Leprince, A., Lefebvre, D., Ghars, M. A., Debarbieux, E., & Savoure, A. (2004). Phospholipase D is a negative regulator of proline biosynthesis in Arabidopsis thaliana. Journal of Biological Chemistry, 279, 14812–14818.

    Article  CAS  Google Scholar 

  • Troke, P. F., & Yeo, A. R. (1977). The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology, 28, 89–121.

    Article  Google Scholar 

  • Tuteja, N. (2009). Integrated calcium signaling in plants. In F. Baluska & S. Mancuso (Eds.), Signaling in plant (Springer, pp. 29–49). Germany: Berlin Heidelberg.

    Chapter  Google Scholar 

  • Wahome, P. K., Jesch, H. H., & Grittner, I. (2001). Mechanisms of salt stress tolerance in two rose rootstocks: Rosa chinensis ‘Major’ and R. rubiginosa. Scientia Horticulturae, 87, 207–216.

    Article  CAS  Google Scholar 

  • Weber-Scannell, P. K., & Duffy, L. K. (2007). Effects of total dissolved solids on aquatic organism: a review of literature and recommendation for salmonid species. American Journal of Environmental Sciences, 3, 1–6.

    Article  CAS  Google Scholar 

  • Yang, Y., Wei, X., Shi, R., Fan, Q., & An, L. (2010). Salinity-induced physiological modification in the callus from halophyte Nitraria tangutorum Bobr. Journal of Plant Growth Regulation, 29, 465–476.

    Article  CAS  Google Scholar 

  • Zhu, Z., Wei, G., Li, J., Quan, Q., & Yu, J. (2004). Silicon alleviates salt stress and increase antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167, 527–533.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program and King Mongkut’s University of Technology Thonburi (grant no. PHD/0296/2551).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Thiravetyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saiyood, S., Vangnai, A.S., Inthorn, D. et al. Treatment of Total Dissolved Solids from Plastic Industrial Effluent by Halophytic Plants. Water Air Soil Pollut 223, 4865–4873 (2012). https://doi.org/10.1007/s11270-012-1242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1242-1

Keywords

Navigation