Skip to main content

Advertisement

Log in

Renewable Resource-Based Magnetic Nanocomposites for Removal and Recovery of Phosphorous from Contaminated Waters

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Water pollution by P (phosphorous) is a serious water-related issue being faced by mankind during the past two decades. Several technologies already exist to remove P from contaminated water, but each has its own drawbacks. The present paper discusses a novel microwave-assisted synthesis of reduced iron oxide containing renewable-resource-based media for P removal from contaminated waters. It provides a fast, easy, and economical way to produce reduced iron oxide nanocomposites without requiring the need for hydrogen or inert gas during the transformation. A wide range of other metal/ carbon nanocomposites can also be synthesized using this technology and therefore holds tremendous economic promise. The prepared media were highly effective and efficient in removing P. A 100 % P removal efficiency was attained using a 1 mg/L standard P stock solution and a maximum capacity of 43.7 mg P/g of composite was achieved using 500 mg/L standard P stock solution. The present technology is highly economical as the carbon source employed was a renewable resource media with a high regeneration capacity. The present technology may also be used for arsenic removal from similarly contaminated water. The method of preparation of media, treatment methodology, and characterization methods are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Benyoucef, S., & Amrani, M. (2011). Adsorption of phosphate ions onto low cost Aleppo pine adsorbent. Desalination, 275, 231–236.

    Article  CAS  Google Scholar 

  • Bisquert, J. (2007). Photovoltaic, photoelectronic, and electrochemical devices based on metal-oxide nanoparticles and nanostructures. In: Rodriguez, J. A., & Fernández-García, M. (Eds.), Synthesis, properties, and applications of oxide nanomaterials (pp. 451–490). Hoboken: Wiley

  • Blaney, L. M., Cinar, S., & SenGupta, A. K. (2007). Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Research, 41, 1603–1613.

    Article  CAS  Google Scholar 

  • Chitrakar, R., Tezuka, S., Sonoda, A., Sakane, K., Ooi, K., & Hirotsu, T. (2006). Phosphate adsorption on synthetic goethite and akaganeite. Journal of Colloid and Interface Science, 298, 602–608.

    Google Scholar 

  • Chowdhury, S. R., & Yanful, E. K. (2010). Arsenic and chromium removal by mixed magnetite–maghemite nanoparticles and the effect of phosphate on removal. Journal of Environmental Management, 91, 2238–2247.

    Article  CAS  Google Scholar 

  • de Vicente, I., Merino-Martos, A., Guerrero, F., Amores, V., & de Vicente, J. (2011). Chemical interferences when using high gradient magnetic separation for phosphate removal: consequences for lake restoration. Journal of Hazardous Materials, 192, 995–1001.

    Article  Google Scholar 

  • Delaney, P., McManamon, C., Hanrahan, J. P., Copley, M. P., Holmes, J. D., & Morris, M. A. (2011). Development of chemically engineered porous metal oxides for phosphate removal. Journal oF Hazardous Materaterials FIELD Full Journal Title:Journal of Hazardous Materials, 185, 382–391.

    CAS  Google Scholar 

  • Eberhardt, T. L., Min, S.-H., & Han, J. S. (2006). Phosphate removal by refined aspen wood fiber treated with carboxymethyl cellulose and ferrous chloride. Bioresource Technology, 97, 2371–2376.

    Article  CAS  Google Scholar 

  • El-Tantawy, F., Al-Ghamdi, A. A., Al-Heniti, S., & Abdel Aal, N. (2009). A novel conducting nanocomposites containing phenolic resin/carbon nanoparticles for electromagnetic wave shielding effectiveness at microwave frequency. International Journal of Nanomanufacturing, 4, 51–59.

    Article  CAS  Google Scholar 

  • Eskandarpour, A., Sassa, K., Bando, Y., Ikuta, H., Iwai, K., Okido, M., et al. (2007). Creation of nanomagnetite aggregated iron oxide hydroxide for magnetically removal of fluoride and phosphate from wastewater. ISIJ International, 47, 558–562.

    Article  CAS  Google Scholar 

  • Gokon, N., Shimada, A., Hasegawa, N., Kaneko, H., Kitamura, M., & Tamaura, Y. (2002). Ferrimagnetic coagulation process for phosphate ion removal using high-gradient magnetic separation. Separation Science and Technology, 37, 3781–3791.

    Article  CAS  Google Scholar 

  • Guan, N., Wang, Y., Sun, D., & Xu, J. (2009). 'A simple one-pot synthesis of single-crystalline magnetite hollow spheres from a single iron precursor'. Nanotechnology, 20, 105603/105601–105603/105608.

    Google Scholar 

  • Hemingway, R. W., & Laks, P. E. (Eds.) (1992) Plant polyphenols: Synthesis, properties, significance. Basic Life Sciences, 59

  • Howarth, R. W., & Marino, R. (2006). Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnology and Oceanography, 51, 364–376.

    Article  CAS  Google Scholar 

  • Jingge Li, F. M. (1998). Commercial production of tannins from radiata pine bark for wood adhesives. IPENZ Transactions, 25, 46–52.

    Google Scholar 

  • Kim, J. & Lee, B. (2005). Manufacturing of Fe/Al-coupled lignocellulose media for phosphate or arsenic absorption. WO application, H2O Technologies, LLC, USA

  • Kim, J., Mann, J., & Kwon, S. (2006). Enhanced adsorption and regeneration with lignocellulose-based phosphorus removal media using molecular coating nanotechnology. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 41, 87–100.

    Article  CAS  Google Scholar 

  • Koroskenyi, B., & McCarthy, S. P. (2002). Microwave-assisted solvent-free or aqueous-based synthesis of biodegradable polymers. Journal of Polymers and the Environment, 10, 93–104.

    Article  CAS  Google Scholar 

  • Lee, P.-L., Chiu, Y.-K., Sun, Y.-C., & Ling, Y.-C. (2010). Synthesis of a hybrid material consisting of magnetic iron-oxide nanoparticles and carbon nanotubes as a gas adsorbent. Carbon, 48, 1397–1404.

    Article  CAS  Google Scholar 

  • Liu, J. F., Zhao, Z., & Jiang, G. B. (2008). Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental Science and Technology, 42, 6949–6954.

    Article  CAS  Google Scholar 

  • Lopez, E., Soto, B., Arias, M., Nunez, A., Rubinos, D., & Barral, M. T. (1998). Adsorbent properties of red mud and its use for wastewater treatment. Water Research, 32, 1314–1322.

    Article  CAS  Google Scholar 

  • Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., et al. (2006). Depletion, degradation, and recovery potential of estuaries and coastal seas. Science, 312, 1806–1809.

    Article  CAS  Google Scholar 

  • Lu, A. H., Salabas, E. L., & Schueth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46, 1222–1244.

    Article  CAS  Google Scholar 

  • McDonald, M., Mila, I., & Scalbert, A. (1996). Precipitation of metal ions by plant polyphenols: optimal conditions and origin of precipitation. Journal of Agricultural and Food Chemistry, 44, 599–606.

    Article  CAS  Google Scholar 

  • Mingos, D. M. P. (1994). The applications of microwaves in chemical syntheses. Research on Chemical Intermediates, 20, 85–91.

    Article  CAS  Google Scholar 

  • Parsons, S. A., & Smith, J. A. (2008). Phosphorus removal and recovery from municipal wastewaters. Elements, 4, 109–112.

    Article  CAS  Google Scholar 

  • Rimbu, G. A., Jackson, C. L., & Scott, K. (2006). Platinum/carbon/polyaniline based nanocomposites as catalysts for fuel cell technology. Journal of Optoelectronics and Advanced Materials, 8, 611–616.

    CAS  Google Scholar 

  • Sajitha, E. P., Prasad, V., Subramanyam, S. V., Eto, S., Takai, K., & Enoki, T. (2004). Synthesis and characteristics of iron nanoparticles in a carbon matrix along with the catalytic graphitization of amorphous carbon. Carbon, 42, 2815–2820.

    Article  CAS  Google Scholar 

  • Sarkar, S., Blaney, L. M., Gupta, A., Ghosh, D., & SenGupta, A. K. (2008). Arsenic removal from groundwater and its safe containment in a rural environment: validation of a sustainable approach. Environmental Science and Technology, 42, 4268–4273.

    Article  CAS  Google Scholar 

  • Scalbert, A., Monties, B., & Janin, G. (1989). Tannins in wood: comparison of different estimation methods. Journal of Agricultural and Food Chemistry, 37, 1324–1329.

    Article  CAS  Google Scholar 

  • Schwickardi, M., Olejnik, S., Salabas, E.-L., Schmidt, W. & Schueth, F. (2006). Scalable synthesis of activated carbon with superparamagnetic properties. Chemical Commununication (Cambridge), 3987–3989.

  • Sengupta, S., & Pandit, A. (2011). Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Research, 45, 3318–3330.

    Article  CAS  Google Scholar 

  • Smetacek, V., Bathmann, U., Nöthig, E. M., & Scharek, R. (1991). Coastal eutrophication: Causes and consequences. In Mantoura, R. F. C., Martin, J.-M., & Wollast, R. (Eds.). Ocean margin processes in global change (pp. 251–279). Chichester: Wiley

  • Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems. A global problem. Environmental Science and Pollution Research International, 10, 126–139.

    Article  CAS  Google Scholar 

  • Viswanathan, T. (2011). Microwave-assisted synthesis of carbon nanotubes from tannin, lignin, and derivatives. US patent application 20110171110.

  • Viswanathan, T., Gunawan, G., Bourdo, S., Saini, V., Moran, J., Pack, L., et al. (2011). Evaluation of a renewable resource-based carbon-iron oxide nanocomposite for removal of arsenic from contaminated water. Journal of Macromolecular Science, Part A. Pure and Applied Chemistry, 48, 348–354.

    Article  CAS  Google Scholar 

  • Xia, L. G. (2010). Membrane separation technology principle and its application to wastewater treatment. Shandong Huagong, 39, 48–51.

    Google Scholar 

  • Yang, Y., Gupta, M. C., & Dudley, K. L. (2007). Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites. Nanotechnology, 18, 345701/345704–345701/345704.

    Google Scholar 

  • Yeoman, S., Stephenson, T., Lester, J. N., & Perry, R. (1988). The removal of phosphorus during wastewater treatment: A review. Environmental Pollution, 49, 183–233.

    Article  CAS  Google Scholar 

  • Zhang, D., Wei, S., Kaila, C., Su, X., Wu, J., Karki, A. B., et al. (2010). Carbon-stabilized iron nanoparticles for environmental remediation. Nanoscale, 2, 917–919.

    Article  CAS  Google Scholar 

  • Zhao, D., & Sengupta, A. K. (1998). Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers. Water Research, 32, 1613–1625.

    Article  CAS  Google Scholar 

  • Zhou, Y., Xing, X., Liu, Z., Cui, L., Yu, A., Feng, Q., et al. (2008). Enhanced coagulation of ferric chloride aided by tannic acid for phosphorus removal from wastewater. Chemosphere, 72, 290–298.

    Google Scholar 

  • Zhu, T., Jenssen, P. D., Maehlum, T., & Krogstad, T. (1997). Phosphorus sorption and chemical characteristics of lightweight aggregates (LWA)—Potential filter media in treatment wetlands. Water Science and Technology, 35, 103–108.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Arkansas at Little Rock (UALR) Nanotechnology Centre for the equipment used for the characterization of the composite. Partial funding by the US Department of Energy is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tito Viswanathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramasahayam, S.K., Gunawan, G., Finlay, C. et al. Renewable Resource-Based Magnetic Nanocomposites for Removal and Recovery of Phosphorous from Contaminated Waters. Water Air Soil Pollut 223, 4853–4863 (2012). https://doi.org/10.1007/s11270-012-1241-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1241-2

Keywords

Navigation