Skip to main content
Log in

A Hybrid Approach for PAHs and Metals Removal from Field-Contaminated Sediment Using Activated Persulfate Oxidation Coupled with Chemical-Enhanced Washing

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the removal of both polycyclic aromatic hydrocarbons (PAHs) and heavy metals from field-contaminated sediments by activated persulfate oxidation. Various chemicals, including hydroxypropyl-β-cyclodextrin (HPCD), S,S-ethylenediaminedisuccinic acid (EDDS), tetrasodium pyrophosphate (Na4P2O7), and hydrochloric acid (HCl), were applied individually before or after activated persulfate oxidation to enhance the co-removal of both types of pollutants. It was found that the organic removal efficiency was not significantly enhanced by increasing the concentration of HPCD from 2.5 to 5.0 mM. The removal efficiency of heavy metals was not improved even at an excess amount of EDDS after activated persulfate oxidation. However, the addition of EDDS acted as the Fe2+ carrier for activated persulfate oxidation. In addition, no significant enhancement of heavy metal removal was observed by increasing the concentrations of Na4P2O7 and HCl from 0.01 to 0.1 M after activated persulfate oxidation. However, comparing 0.1 M HCl with 0.1 M Na4P2O7, HCl was shown to be more effective in promoting the removal of organic pollutants. With further adjustments on the experimental conditions, the highest removal amount of metals and PAHs was achieved by adding 2 M of HCl with 3 days mixing, followed by Fe2+-activated persulfate oxidation (PS/Fe2+ molar ratio at 4:1) for further 6 h mixing. The removal efficiency of low and high molecular weight PAHs was about 70 and 20 %, respectively, while the removal efficiency of metals was 70, 100, 40, 65, 65, 80, and 100 % for Cr, Cu, Hg, Mn, Ni, Pb, and Zn, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abumaizar, R. J., & Smith, E. H. (1999). Heavy metal contaminants removal by soil washing. Journal of Hazardous Materials, 70(1–2), 71–86.

    Article  CAS  Google Scholar 

  • Block, P.A., Brown, R.A.,& Robinson, D. (2004). Novel activation technologies for sodium persulfate in situ chemical oxidation. Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, 24-27 May 2004, Monterey, CA.

  • Calmano, W., Hong, J., & Forstner, U. (1993). Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Science and Technology, 28(8–9), 223–235.

    CAS  Google Scholar 

  • Cescutti, P., Garozzo, D., & Rizzo, R. (1996). Study of the inclusion complexes of aromatic molecules with cyclodextrins using ionspray mass spectrometry. Carbohydrate Research, 290(2), 105–115.

    Article  CAS  Google Scholar 

  • Cuypers, M. P., Grotenhuis, J. T. C., & Rulkens, W. H. (1998). Characterisation of PAH-contaminated sediments in a remediation perspective. Water Science and Technology, 37(6–7), 157–164.

    Article  CAS  Google Scholar 

  • Ferrarese, E., Andreottola, G., & Oprea, I. A. (2008). Remediation of PAH-contaminated sediments by chemical oxidation. Journal of Hazardous Materials, 152(1), 128–139.

    Article  CAS  Google Scholar 

  • Gao, Y., He, J., Ling, W., Hu, H., & Liu, F. (2003). Effects of organic acids on copper and cadmium desorption from contaminated soils. Environment International, 29(5), 613–618.

    Article  CAS  Google Scholar 

  • Haapea, P., & Tuhkanen, T. (2006). Integrated treatment of PAH contaminated soil by soil washing, ozonation and biological treatment. Journal of Hazardous Materials, 136(2), 244–250.

    Article  CAS  Google Scholar 

  • Haarstad, K., Bavor, H. J., & Mæhlum, T. (2012). Organic and metallic pollutants in water treatment and natural wetlands: a review. Water Science and Technology, 65(1), 76–99.

    Article  CAS  Google Scholar 

  • Hauser, L., Tandy, S., Schulin, R., & Nowack, B. (2005). Column extraction of heavy metals from soils using the biodegradable chelating agent EDDS. Environmental Science and Technology, 39(17), 6819–6824.

    Article  CAS  Google Scholar 

  • Heim, S., Schwarzbauer, J., Kronimus, A., Littke, R., Woda, C., & Mangini, A. (2004). Geochronology of anthropogenic pollutants in riparian wetland sediments of the Lippe River (Germany). Organic Geochemistry, 35(11-12 SPEC. ISS), 1409–1425.

    CAS  Google Scholar 

  • Henner, P., Schiavon, M., Morel, J. L., & Lichtfouse, E. (1997). Polycyclic aromatic hydrocarbon (PAH) occurrence and remediation methods. Analusis, 25(9–10), 56–59.

    Google Scholar 

  • Hwang, H. M., Green, P. G., & Young, T. M. (2008). Tidal salt marsh sediment in California, USA: part 3. Current and historic toxicity potential of contaminants and their bioaccumulation. Chemosphere, 71(11), 2139–2149.

    Article  CAS  Google Scholar 

  • Kent, D. B., Davis, J. A., Joye, J. L., & Curtis, G. P. (2008). Influence of variable chemical conditions on EDTA-enhanced transport of metal ions in mildly acidic groundwater. Environmental Pollution, 153(1), 44–52.

    Article  CAS  Google Scholar 

  • Khodadoust, A. P., Reddy, K. R., & Maturi, K. (2005). Effect of different extraction agents on metal and organic contaminant removal from a field soil. Journal of Hazardous Materials, 117(1), 15–24.

    Article  CAS  Google Scholar 

  • Kile, D. E., Chiou, C. T., Zhou, H., Li, H., & Xu, O. (1995). Partition of nonpolar organic pollutants from water to soil and sediment organic matters. Environmental Science and Technology, 29(5), 1401–1406.

    Article  CAS  Google Scholar 

  • Killian, P. F., Bruell, C. J., Liang, C., & Marley, M. C. (2007). Iron (II) activated persulfate oxidation of MGP contaminated soil. Soil and Sediment Contamination, 16(6), 523–537.

    Article  CAS  Google Scholar 

  • Kos, B., & Leštan, D. (2003). Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environmental Science and Technology, 37(3), 624–629.

    Article  CAS  Google Scholar 

  • Liang, C. J., Bruell, C. J., Marley, M. C., & Sperry, K. L. (2003). Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination, 12(2), 207–228.

    Article  CAS  Google Scholar 

  • Maturi, K., & Reddy, K. R. (2008). Extractants for the removal of mixed contaminants from soils. Soil and Sediment Contamination, 17(6), 586–608.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). An evaluation of technologies for the heavy metal remediation of dredged sediments. Journal of Hazardous Materials, 85(1–2), 145–163.

    Article  CAS  Google Scholar 

  • O'Mahony, M. M., Dobson, A. D. W., Barnes, J. D., & Singleton, I. (2006). The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil. Chemosphere, 63(2), 307–314.

    Article  Google Scholar 

  • Peng, J. F., Song, Y. H., Yuan, P., Cui, X. Y., & Qiu, G. I. (2009). The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials, 161(2–3), 633–640.

    Article  CAS  Google Scholar 

  • Peters, R. W. (1999). Chelant extraction of heavy metals from contaminated soils. Journal of Hazardous Materials, 66(1–2), 151–210.

    Article  CAS  Google Scholar 

  • Snape, I., Scouller, R. C., Stark, S. C., Stark, J., Riddle, M. J., & Gore, D. B. (2004). Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments. Chemosphere, 57(6), 491–504.

    Article  CAS  Google Scholar 

  • Tandy, S., Bossart, K., Mueller, R., Ritschel, J., Hauser, L., Schulin, R., & Nowack, B. (2004). Extraction of heavy metals from soils using biodegradable chelating agents. Environmental Science and Technology, 38(3), 937–944.

    Article  CAS  Google Scholar 

  • Thayalakumaran, T., Robinson, B. H., Vogeler, I., Scotter, D. R., Clothier, B. E., & Percival, H. J. (2003). Plant uptake and leaching of copper during EDTA-enhanced phytoremediation of repacked and undisturbed soil. Plant and Soil, 254(2), 415–423.

    Article  CAS  Google Scholar 

  • Townsend, A. T., Palmer, A. S., Stark, S. C., Samson, C., Scouller, R. C., & Snape, I. (2007). Trace metal characterisation of marine sediment reference materials MESS-3 and PACS-2 in dilute HCl extracts. Marine Pollution Bulletin, 54(2), 236–239.

    Article  CAS  Google Scholar 

  • Vandevivere, P., Hammes, F., Verstraete, W., Feijtel, T., & Schowanek, D. (2001). Metal decontamination of soil, sediment, and sewage sludge by means of transition metal chelant [S, S]-EDDS. Journal of Environmental Engineering, 127(9), 802–811.

    Article  CAS  Google Scholar 

  • Wang, J. M., Maier, R. M., & Brusseau, M. L. (2005). Influence of hydroxypropyl-β-cyclodextrin (HPCD) on the bioavailability and biodegradation of pyrene. Chemosphere, 60(5), 725–728.

    Article  CAS  Google Scholar 

  • Wenzel, W. W., Unterbrunner, R., Sommer, P., & Sacco, P. (2003). Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant and Soil, 249(1), 83–96.

    Article  CAS  Google Scholar 

  • Wild, S. R., & Jones, K. C. (1995). Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environmental Pollution, 88(1), 91–108.

    Article  CAS  Google Scholar 

  • Wu, L. H., Luo, Y. M., Xing, X. R., & Christie, P. (2004). EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture, Ecosystems and Environment, 102(3), 307–318.

    Article  CAS  Google Scholar 

  • Yan, D. Y. S., & Lo, I. M. C. (2011). Enhanced multi-metal extraction with EDDS of deficient and excess dosages under the influence of dissolved and soil organic matter. Environmental Pollution, 159(1), 78–83.

    Article  CAS  Google Scholar 

  • Yan, D. Y. S., & Lo, I. M. C. (2012). Pyrophosphate coupling with chelant-enhanced soil flushing of field contaminated soils for heavy metal extraction. Journal of Hazardous Materials, 199–200, 51–57.

    Article  Google Scholar 

  • Yip, T. C. M., Tsang, D. C. W., Ng, K. T. W., & Lo, I. M. C. (2009a). Kinetic interactions of EDDS with soils. 1. Metal resorption and competition under EDDS deficiency. Environmental Science and Technology, 43(3), 831–836.

    Article  CAS  Google Scholar 

  • Yip, T. C. M., Tsang, D. C. W., Ng, K. T. W., & Lo, I. M. C. (2009b). Empirical modeling of heavy metal extraction by EDDS from single-metal and multi-metal contaminated soils. Chemosphere, 74(2), 301–307.

    Article  Google Scholar 

Download references

Acknowledgments

This research study was partly sponsored by the Hong Kong SAR Government. The authors would like to appreciate the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program for the financial support of Mr. V. Tanboonchuy at HKUST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. C. Lo.

Supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, I.M.C., Tanboonchuy, V., Yan, D.Y.S. et al. A Hybrid Approach for PAHs and Metals Removal from Field-Contaminated Sediment Using Activated Persulfate Oxidation Coupled with Chemical-Enhanced Washing. Water Air Soil Pollut 223, 4801–4811 (2012). https://doi.org/10.1007/s11270-012-1236-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1236-z

Keywords

Navigation