Site-Specific Gastrointestinal Metal Variability in Relation to the Gut Content and Fish Age of Indigenous European Chub from the Sava River

Abstract

This comprehensive field survey on indigenous European chub (Squalius cephalus L.) presents, for the first time, site-specific variability of trace metal concentrations in the gut content, gastrointestinal tissue and two gastrointestinal sub-cellular fractions, operationally defined as metal-sensitive fraction (S50, which was isolated at 50,000 × g and contains total water soluble proteins), and metal detoxified fraction (heat-treated S50 (HT S50), which contains heat-stable proteins like metallothioneins). At five sampling sites along the Sava River in Croatia 1 to 5-year-old chub were collected in the post-spawning period (September) in order to estimate if metal concentrations in fish intestine are related to their levels in the gut content or fish age. Concentrations of essential metals (Zn, Fe, Cu, Mn) and non-essential Cd decrease in the gut content as follows: Fe > Mn > Zn > Cu > Cd, while in the gastrointestinal tissue: Zn > Fe > Cu ≥ Mn > Cd. Observed difference in metal abundance between the gut content and gastrointestinal tissue points to the selective metal absorption in fish intestine. Relationship among metal concentrations in the gastrointestinal tissue and two sub-cellular fractions (S50/HT S50) is significant for all analysed metals, with Spearman correlation coefficients (r) at p < 0.01 for Zn 0.84/0.73, Cu 0.73/0.73, Fe 0.62/0.58, Mn 0.81/0.78, Cd 0.81/0.82. Site-specific differences point to the age-related increase of gastrointestinal Cu, Mn and Cd towards the downstream sites, while significant correlation between metal concentrations in the gut content and fish age exists only for Mn. In the sub-cellular gastrointestinal fractions, site-specific differences were not recorded on total water-soluble protein and metallothionein concentrations, which might be ascribed to the constitutional level.

This is a preview of subscription content, access via your institution.

Fig 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Andres, S., Ribeyre, F., Tourencq, J. N., & Boudou, A. (2000). Interspecific comparison of cadmium and zinc contamination in the organs of four fish species along a polymetallic pollution gradient (Lot River, France). Science of the Total Environment, 248(1), 11–25.

    Article  CAS  Google Scholar 

  2. Berntssen, M. H. G., Hylland, K., Bonga, S. E. W., & Maage, A. (1999). Toxic levels of dietary copper in Atlantic salmon (Salmo salar L.) parr. Aquatic Toxicology, 46(2), 87–99.

    Article  CAS  Google Scholar 

  3. Berntssen, M. H. G., Aspholm, O. O., Hylland, K., Bonga, S. E. W., & Lundebye, A.-K. (2001). Tissue metallothionein, apoptosis and cell proliferation responses in Atlantic salmon (Salmo salar L.) parr fed elevated dietary cadmium. Comparative Biochemistry and Physiology. C, 128(3), 299–310.

    CAS  Google Scholar 

  4. Bury, N. R., Walker, P. A., & Glover, C. N. (2003). Nutritive metal uptake in teleost fish. Journal of Experimental Biology, 206, 11–23.

    Article  CAS  Google Scholar 

  5. Campbell, P. G. C., Clearwater, S. J., Brown, P. B., Fisher, N. S., Hogstrand, C., Lopez, G. R., Mayer, L. M., & Meyer, J. S. (2005). Digestive physiology, chemistry and nutrition. In J. S. Meyer, W. J. Adams, K. V. Brix, S. N. Luoma, D. R. Mount, W. A. Stubblefield, & C. M. Wood (Eds.), Toxicity of dietborne metals to aquatic organisms (pp. 13–57). Brussels: Society of environmental toxicology and chemistry (SETAC).

    Google Scholar 

  6. Chowdhury, M. J., Baldisserotto, B., & Wood, C. M. (2005). Tissue-specific cadmium and metallothionein levels in rainbow trout chronically acclimated to waterborne or dietary cadmium. Archives of Environmental Contamination and Toxicology, 48(3), 381–390.

    Article  CAS  Google Scholar 

  7. Clearwater, S. J., Baskin, S. J., Wood, C. M., & McDonald, D. G. (2000). Gastrointestinal uptake and distribution of copper in rainbow trout. Journal of Experimental Biology, 203(16), 2455–2466.

    CAS  Google Scholar 

  8. Creighton, N., & Twining, J. (2010). Bioaccumulation from food and water of cadmium, selenium and zinc in an estuarine fish, Ambassis jacksoniensis. Marine Pollution Bulletin, 60, 1815–1821.

    Article  CAS  Google Scholar 

  9. Dallinger, R., & Kautzky, H. (1985). The importance of contaminated food for the uptake of heavy metals by rainbow trout (Salmo gairdneri): a field study. Oecologia, 67, 82–89.

    Article  Google Scholar 

  10. Dragun, Z., & Raspor, B. (2005). Direct determination of Cd in NaCl containing metallothionein fractions of different red mullet tissues by graphite furnace atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 20(10), 1121–1123.

    Article  CAS  Google Scholar 

  11. Dragun, Z., & Raspor, B. (2008). Copper determination by ETAAS in fish tissue cytosols with minimal sample pre-treatment. Atomic Spectroscopy, 29(3), 107–113.

    CAS  Google Scholar 

  12. Dragun, Z., Raspor, B., & Podrug, M. (2007). The influence of the season and the biotic factors on the cytosolic metal concentrations in the gills of the European chub (Leuciscus cephalus L.). Chemosphere, 69(6), 911–919.

    Article  CAS  Google Scholar 

  13. Dragun, Z., Raspor, B., & Roje, V. (2008). The labile metal concentrations in Sava River water assessed by diffusive gradients in thin films. Chemical Speciation and Bioavailability, 20, 33–46.

    Article  CAS  Google Scholar 

  14. Dragun, Z., Podrug, M., & Raspor, B. (2009). The assessment of natural causes of metallothionein variability in the gills of European chub (Squalius cephalus L.). Comparative Biochemistry and Physiology. C, 150, 209–217.

    Google Scholar 

  15. Dragun, Z., Roje, V., Mikac, N., & Raspor, B. (2009). Preliminary assessment of total dissolved trace metal concentrations in Sava River water. Environmental Monitoring and Assessment, 159(1), 99–110.

    Article  CAS  Google Scholar 

  16. Erk, M., Ivanković, D., Raspor, B., & Pavičić, J. (2002). Evaluation of different purification procedures for the electrochemical quantification of mussel metallothioneins. Talanta, 57, 1211–1218.

    Google Scholar 

  17. European Parliament and the Council of the European Union (EPC EU). (2008). Directive 2008/105/EC of the European Parliament and of the Council on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC, and amending Directive 2000/60/EC of the European Parliament and of the Council. Official Journal of the European Union, 348, 84–97.

    Google Scholar 

  18. Farkas, A., Salánki, J., & Specziár, A. (2003). Age- and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Water Research, 37, 959–964.

    Article  CAS  Google Scholar 

  19. Filipović Marijić, V., & Raspor, B. (2006). Age and tissue dependent metallothionein and cytosolic metal distribution in a native Mediterranean fish, Mullus barbatus, from the Eastern Adriatic Sea. Comparative Biochemistry and Physiology. C, 143, 382–387.

    Article  Google Scholar 

  20. Filipović Marijić, V., & Raspor, B. (2007a). Metal exposure assessment in native fish, Mullus barbatus L., from the Eastern Adriatic Sea. Toxicology Letters, 168(3), 292–301.

    Article  Google Scholar 

  21. Filipović Marijić, V., & Raspor, B. (2007b). Metallothinein in intestine of red mullet, Mullus barbatus as a biomarker of copper exposure in the coastal marine areas. Marine Pollution Bulletin, 54(7), 935–940.

    Article  Google Scholar 

  22. Filipović Marijić, V., & Raspor, B. (2010). The impact of fish spawning on metal and protein levels in gastrointestinal cytosol of indigenous European chub. Comparative Biochemistry and Physiology. C, 152, 133–138.

    Google Scholar 

  23. Giguère, A., Campbell, P. G. C., Hare, L., McDonald, D. G., & Rasmussen, J. B. (2004). Influence of lake chemistry and fish age on cadmium, copper, and zinc concentrations in various organs of indigenous yellow perch (Perca flavescens). Canadian Journal of Fisheries and Aquatic Sciences, 61(9), 1702–1716.

    Article  Google Scholar 

  24. Habeković, D., Aničić, I., & Safner, R. (1993). Growth dynamics of the chub fish in the River Sava [Dinamika rasta klena u rijeci Savi, in Croatian]. Ribarstvo, 48(3), 79–88.

    Google Scholar 

  25. Handy, R. D., Sims, D. W., Giles, A., Campbell, H. A., & Musonda, M. M. (1999). Metabolic trade-off between locomotion and detoxification for maintenance of blood chemistry and growth parameters by rainbow trout (Oncorhynchus mykiss) during chronic dietary exposure to copper. Aquatic Toxicology, 47, 23–41.

    Article  CAS  Google Scholar 

  26. HRN EN 14011: (2005). Fish sampling by electric power [Uzorkovanje riba električnom strujom, in Croatian].

  27. Kamunde, C., Clayton, C., & Wood, C. M. (2002). Waterborne vs. dietary copper uptake in rainbow trout and the effects of previous waterborne copper exposure. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 283(1), R69–R78.

    CAS  Google Scholar 

  28. Krča, S., Žaja, R., Čalić, V., Terzić, S., Grubešić, M. S., Ahel, M., & Smital, T. (2007). Hepatic biomarker responses to organic contaminants in feral chub (Leuciscus cephalus)—laboratory characterization and field study in the Sava River, Croatia. Environmental Toxicology and Chemistry, 26(12), 2620–33.

    Article  Google Scholar 

  29. Langston, W. J., Chesman, B. S., Burt, G. R., Pope, N. D., & McEvoy, J. (2002). Metallothionein in liver of eels Anguilla anguilla from the Thames Estuary: an indicator of environmental quality? Marine Environmental Research, 53, 263–293.

    Article  CAS  Google Scholar 

  30. Linde, A. R., Sánchez-Galán, S., Klein, D., García-Vázquez, E., & Summer, K. H. (1999). Metallothionein and heavy metals in brown trout (Salmo trutta) and European eel (Anguilla anguilla): a comparative study. Ecotoxicology and Environmental Safety, 44, 168–173.

    Article  CAS  Google Scholar 

  31. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin Phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  32. Mason, A. Z., & Jenkins, K. D. (1995). Metal detoxification in aquatic organisms. In A. Tessier & D. R. Turner (Eds.), Metal Speciation and Bioavailability in Aquatic Systems (pp. 479–608). Chichester: John Wiley and Sons.

    Google Scholar 

  33. Miramand, P., Lafaurie, M., Fowler, S. W., Lemaire, P., Guary, J. C., & Bentley, D. (1991). Reproductive cycle and heavy metals in the organs of red mullet, Mullus barbatus (L), from the northwestern Mediterranean. Science of the Total Environment, 103, 47–56.

    Article  CAS  Google Scholar 

  34. Ojo, A. A., & Wood, C. M. (2007). In vitro analysis of the bioavailability of six metals via the gastro-intestinal tract of the rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 83, 10–23.

    Article  CAS  Google Scholar 

  35. Oliveira, M., Ahmad, I., Maria, V. L., Serafim, A., Bebianno, M. J., Pacheco, M., & Santos, M. A. (2010). Hepatic metallothionein concentrations in the golden grey mullet (Liza aurata)—relationship with environmental metal concentrations in a metal-contaminated coastal system in Portugal. Marine Environmental Research, 69, 227–233.

    Article  CAS  Google Scholar 

  36. Olsvik, P. A., Gundersen, P., Andersen, R. A., & Zachariassen, K. E. (2001). Metal accumulation and metallothionein in brown trout, Salmo trutta, from two Norwegian rivers differently contaminated with Cd, Cu and Zn. Comparative Biochemistry and Physiology. C, 128(2), 189–201.

    CAS  Google Scholar 

  37. Podrug, M., & Raspor, B. (2009). Seasonal variation of the metal (Zn, Fe, Mn) and metallothionein concentrations in the liver cytosol of the European chub (Squalius cephalus L.). Environmental Monitoring and Assessment, 157, 1–10.

    Article  CAS  Google Scholar 

  38. Podrug, M., Raspor, B., Erk, M., & Dragun, Z. (2009). Protein and metal concentrations in two fractions of hepatic cytosol of the European chub (Squalius cephalus L.). Chemosphere, 75, 843–849.

    Article  CAS  Google Scholar 

  39. Rainbow, P. S., Luoma, S. N., & Wang, W.-X. (2011). Trophically available metal—a variable feast. Environmental Pollution, 159(10), 2347–2349.

    Article  CAS  Google Scholar 

  40. Rashed, M. N. (2001a). Cadmium and lead levels in fish (Tilapia nilotica) tissues as biological indicator for lake water pollution. Environmental Monitoring and Assessment, 68(1), 78–89.

    Article  Google Scholar 

  41. Rashed, M. N. (2001b). Monitoring of environmental heavy metals in fish from Nasser Lake. Environment International, 27, 27–33.

    Article  CAS  Google Scholar 

  42. Raspor, B., Paić, M., & Erk, M. (2001). Analysis of metallothioneins by the modified Brdička procedure. Talanta, 55, 109–115.

    Article  CAS  Google Scholar 

  43. Raspor, B., Dragun, Z., & Erk, M. (2005). Examining the suitability of mussel digestive gland to serve as a biomonitoring target organ. Archives of Industrial Hygiene and Toxicology, 56(2), 141–149.

    CAS  Google Scholar 

  44. Rotchell, J. M., Clarke, K. R., Newton, L. C., & Bird, D. J. (2001). Hepatic metallothionein as a biomarker for metal contamination: age effects and seasonal variation in European flounders (Pleuronectes flesus) from the Severn Estuary and Bristol Channel. Marine Environmental Research, 52, 151–171.

    Article  CAS  Google Scholar 

  45. Saha, M., Sarkar, S. K., & Bhattacharya, B. (2006). Interspecific variation in heavy metal body concentrations in biota of Sunderban mangrove wetland, northeast India. Environment International, 32(2), 203–207.

    Article  CAS  Google Scholar 

  46. Schlekat, C. E., Kidd, K. A., Adams, W. J., Baird, D. J., Farag, A. M., Maltby, L., & Stewart, A. R. (2005). Toxic effects of dietborne metals: field studies. In J. S. Meyer, W. J. Adams, K. V. Brix, S. N. Luoma, D. R. Mount, W. A. Stubblefield, & C. M. Wood (Eds.), Toxicity of dietborne metals to aquatic organisms (pp. 113–152). Brussels: Society of environmental toxicology and chemistry (SETAC).

    Google Scholar 

  47. Singha Roy, U., Chattopadhyay, B., Datta, S., & Kumar Mukhopadhyay, S. (2011). Metallothionein as a biomarker to assess the effects of pollution on Indian Major carp species from wastewater-fed fishponds of East Calcutta wetlands (a Ramsar Site). Environmental Research, Engineering and Management, 4(58), 10–17.

    Google Scholar 

  48. Standard Operation Procedure (1999). Preparation of S50-fraction from fish tissue (unapproved rev. 01). 1st Workshop in the frame of BEQUALM programme, 13-14 September 1999, NIVA, Oslo.

  49. Staniskiene, B., Matusevicius, P., Budreckiene, R., & Skibniewska, K. A. (2006). Distribution of heavy metals in tissues of freshwater fish in Lithuania. Polish Journal of Environmental Studies, 15(4), 585–591.

    CAS  Google Scholar 

  50. Sun, L.-T., & Jeng, S.-S. (1998). Comparative zinc concentrations in tissues of common carp and other aquatic organisms. Zoological Studies, 37, 184–190.

    CAS  Google Scholar 

  51. Ünlü, E., Akba, O., Sevim, S., & Gümgüm, B. (1996). Heavy metal levels in Mullet, Liza abu (Heckel, 1843) (Mugilidae) from the Tigris River, Turkey. Fresenius Environmental Bulletin, 5, 107–112.

    Google Scholar 

  52. Van Campenhout, K., Bervoets, L., & Blust, R. (2003). Metallothionein concentrations in natural populations of gudgeon (Gobio gobio): relationship with metal concentrations in tissues and environment. Environmental Toxicology and Chemistry, 22(7), 1548–1555.

    Google Scholar 

  53. Watanabe, T., Kiron, V., & Satoh, S. (1997). Trace minerals in fish nutrition. Aquaculture, 151, 185–207.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the Ministry of Science, Education and Sport of Republic Croatia (project no. 098-0982934-2721) is acknowledged. The authors are also grateful for the valuable help in the fieldwork to all EU FP6 SARIB Project participants and for the useful advice concerning metal determination on HR ICP-MS to Dr. Nevenka Mikac, Dr. Vibor Roje and Željka Fiket, B.Sc. and on AAS to Dr. Zrinka Dragun. We appreciate the assistance of the Meteorological and Hydrological Service Office for reporting the data on hydrological parameters of the Sava River water.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vlatka Filipović Marijić.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Filipović Marijić, V., Raspor, B. Site-Specific Gastrointestinal Metal Variability in Relation to the Gut Content and Fish Age of Indigenous European Chub from the Sava River. Water Air Soil Pollut 223, 4769–4783 (2012). https://doi.org/10.1007/s11270-012-1233-2

Download citation

Keywords

  • Essential metals
  • Cd
  • Metallothionein
  • Total proteins
  • Gastrointestinal tissue/sub-cellular fractions
  • Freshwater fish