Skip to main content
Log in

Chemical and Biological Combined Treatments for the Removal of Pesticides from Wastewaters

Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The combination of chemical oxidation (Fenton reaction) and biological treatment processes is a promising technique aiming to reduce recalcitrant wastewater loads. Preliminary tests were carried out on two widely used toxic and non-biodegradable pesticides, namely, Dazomet and Fenamiphos. The chemical reaction was employed as a pre-treatment step for the conversion of the substrates into oxygenated intermediates that were easily removed by means of a final biological treatment. In the combined action, the mineralisation activity of a selected microbial consortium was used to degrade residual volatile and non-volatile organic compounds into CO2 and biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Alfano, G., Belli, C., Lustrato, G., & Ranalli, G. (2008). Pile composting of two-phase centrifuged olive husks residues: technical solutions and quality of the cured compost. Bioresource Technology, 99, 4694–4701.

    Article  CAS  Google Scholar 

  • APAT-IRSA-CNR. (2003). Metodi analitici per le acque. Roma, Italy: CNR.

    Google Scholar 

  • Al Momani, F. A., Shawaqfeh, A. T., & Shawaqfeh, M. S. (2007). Solar wastewater treatment plant for aqueous solution of pesticide. Solar Energy, 81(10), 1213–1218.

    Article  CAS  Google Scholar 

  • Ballesteros Martín, M. M., Sánchez Pérez, J. A., Casas López, J. L., Oller, I., & Malato Rodríguez, S. (2009). Degradation of a four-pesticide mixture by combined photo-Fenton and biological oxidation. Water Research, 43, 653–660.

    Article  Google Scholar 

  • Benitez, F. J., Acero, J. L., Gonzalez, T., & Garcia, J. (2001). Organic matter removal from wastewaters with manure, household waste or sewage sludge. Process Biochemistry, 37, 257–265.

    Article  Google Scholar 

  • Bressan, M., Liberatore, L., D’Alessandro, N., Tonucci, L., Belli, C., & Ranalli, G. (2004). Improved combined chemical and biological treatments of olive oil mill wastewaters. Journal of Agricultural and Food Chemistry, 52, 1228–1233.

    Article  CAS  Google Scholar 

  • Cáceres, T. P., Megharaj, M., Malik, S., Beer, M., & Naidu, R. (2009). Hydrolysis of fenamiphos and its toxic oxidation products by Microbacterium sp. in pure culture and groundwater. Bioresource Technology, 100, 2732–2736. doi:10.1016/j.biortech.2008.12.043.

    Article  Google Scholar 

  • Cappitelli, F., Principi, P., Pedrazzani, R., Toniolo, L., & Sorlini, C. (2007). Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Science of the Total Environment, 385, 172–181.

    Article  CAS  Google Scholar 

  • Centi, G., Perathoner, S., Torre, T., & Verdone, M. G. (2000). Catalytic wet oxidation with H2O2 of carboxylic on homogeneous and heterogeneous Fenton type catalysts. Catalysis Today, 55, 61–69.

    Article  CAS  Google Scholar 

  • Cerillo, I., Olea-Serrano, M. F., Ibarluzea, J., Exposito, J., Torne, P., Laguna, et al. (2006). Environmental and lifestyle factors for organochlorine exposure among women living in Southern Spain. Chemosphere, 62(11), 1917–1924.

    Article  Google Scholar 

  • Chen, S., Sun, D., & Chung, J. S. (2007). Treatment of pesticide wastewater by moving-bed biofilm reactor combined Fenton–coagulation pretreatment. Journal of Hazardous Materials, 144, 577–584.

    Article  CAS  Google Scholar 

  • Chiron, S., Fernandez-Alba, A., Rodriguez, A., & Garcia-Calvo, E. (2000). Pesticide chemical oxidation: state of the art. Water Research, 34(2), 366–377.

    Article  CAS  Google Scholar 

  • Comninellis, C., Kapalka, A., Malato, S., Parsons, S. A., Poulios, I., & Mantzavinos, D. (2008). Advanced oxidation processes for water treatment: advances and trends for R&D. Journal of Chemical Technology and Biotechnology, 83, 769–776.

    Article  CAS  Google Scholar 

  • Cortez, S., Teixeira, P., Oliveira, R., & Mota, M. (2011). Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments. Journal of Environmental Management, 92, 749–755.

    Article  CAS  Google Scholar 

  • Directive 2008/105/EC of the European parliament and of the council of 16 December 2008.

  • Erçağ, E., Erçağ, A., & Apak, R. (2004). Spectrophotometric determination of the soil fumigant: dazome with copper (II)–neocuproine reagent. Analytica Chimica Acta, 505, 95–100.

    Article  Google Scholar 

  • Farré, M. J., Franch, M. I., Malato, S., Ayllón, J. A., Peral, J., & Doménech, X. (2005). Degradation of some biorecalcitrant pesticides by homogeneous and heterogeneous photocatalytic ozonation. Chemosphere, 58, 1127–1133.

    Article  Google Scholar 

  • Farré, M. J., Doménech, X., & Peral, J. (2006). Assessment of photo-Fenton and biological treatment coupling for Diuron and Linuron removal from water. Water Research, 40, 2533–2540.

    Article  Google Scholar 

  • Herrmann, J. M., & Guillard, C. (2000). Photocatalytic degradation of pesticides in agricultural used waters. Comptes Rendus de l'Académie des Sciences—Series IIC—Chemistry, 3(23), 417–422.

    Article  CAS  Google Scholar 

  • Kastaned, F., Maleterova, Y., & Kastanek, P. (2007). Combination of advanced oxidation and/or reductive dehalogenation and biodegradation for the decontamination of waters contaminated with chlorinated organic compounds. Separation Science and Technology, 42, 1613–1625.

    Article  Google Scholar 

  • Kolpin, D. W., Thurman, E. M., & Goolsby, D. A. (1996). Occurrence of selected pesticides and their metabolites in near-surface aquifers of the mid-Western United States. Environmental Science & Technology, 30(1), 335–340.

    Article  CAS  Google Scholar 

  • Kornaros, M., & Lyberatos, G. (2006). Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. Journal of Hazardous Materials, 136, 95–102.

    Article  CAS  Google Scholar 

  • Lafi, W. K., & Al-Qodah, Z. (2006). Combined advanced oxidation and biological treatment process for the removal of pesticides from aqueous solutions. Journal of Hazardous Materials, 137, 489–497.

    Article  CAS  Google Scholar 

  • Lapertot, M., Ebrahimi, S., Dazio, S., Rubinelli, A., & Pulgarin, C. (2007). Photo-Fenton and biological integrated process for degradation of a mixture of pesticides. Journal of Photochemistry & Photobiology, A: Chemistry, 186, 34–40.

    Article  CAS  Google Scholar 

  • Lucas, M. S., & Peres, J. A. (2006). Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes and Pigments, 71(3), 236–244.

    Article  CAS  Google Scholar 

  • Malato, S., Blanco, J., Maldonado, M. I., Oller, I., Gernjak, W., & Perez-Estrada, L. (2007). Coupling solar photo-Fenton and biotreatment at industrial scale: main results of a demonstration plant. Journal of Hazardous Materials, 146, 440–446.

    Article  CAS  Google Scholar 

  • Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catalysis Today, 147, 1–59.

    Article  CAS  Google Scholar 

  • Oller, I., Gernjak, W., Maldonado, M. I., Pérez-Estrada, L. A., Sánchez-Pérez, J. A., & Malato, S. (2006). Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. Journal of Hazardous Materials, 138, 507–517.

    Article  CAS  Google Scholar 

  • Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 409, 4141–4166.

    Article  CAS  Google Scholar 

  • Parra, S., Sarria, V., Malato, S., Peringer, P., & Pulgarin, C. (2000). Photochemical versus coupled photochemical–biological flow system for the treatment of two biorecalcitrant herbicides: meobromuron and isproturon. Applied Catalysis B: Environmental, 27, 153–168.

    Article  CAS  Google Scholar 

  • Pérez-Estrada, L. A., Malato, S., Gernjak, W., Aguëra, A., Thurman, E. M., Ferrer, I., et al. (2005). Photo-Fenton degradation of diclofenac: identification of main intermediates and degradation pathway. Environmental Science & Technology, 39(21), 8300–8306.

    Article  Google Scholar 

  • Ranalli, G., Chiumenti, R., Donantoni, L., & Sorlini, C. (1996). Electrolytic treatment of swine liquid manure in a full scale experiment. Journal of Environment Science and Health, 31(A), 1705–1721.

    Article  Google Scholar 

  • Ranalli, G., Bottura, G., Taddei, P., Garavani, M., Marchetti, R., & Sorlini, C. (2001). Composting of solid and sludge residues from agricultural and food industries. Bioindicators of monitoring and compost maturity. Journal of Environment Science and Health, 36(A), 415–436.

    CAS  Google Scholar 

  • Ranalli, G., Belli, C., Lustrato, G., Pizzella, L., Liberatore, L., & Bressan, M. (2008). Effects of combined chemical and biological treatments on the degradability of vulcanization accelerators. Water, Air, and Soil Pollution, 192, 199–209.

    Article  CAS  Google Scholar 

  • Rhind, S. M. (2002). Endocrine disrupting compounds and farm animals: their properties, actions and routes of exposure. Domestic Animal Endocrinology, 23(1–2), 179–187.

    Article  CAS  Google Scholar 

  • Tajeddine, L., Nemmaoui, M., Mountacer, H., Dahchour, A., & Sarakha, M. (2010). Photodegradation of fenamiphos on the surface of clays and soils. Environmental Chemical Letters, 8, 123–128.

    Article  CAS  Google Scholar 

  • Tamimi, M., Qourzal, S., Barka, N., Assabbane, A., & Ait-Ichou, Y. (2008). Methomyl degradation in aqueous solutions by Fenton’s reagent and the photo-Fenton system. Separation and Purification Technology, 61(1), 103–108.

    Article  CAS  Google Scholar 

  • Van der Werf, H. M. G. (1996). Assessing the impact of pesticide on the environment. Agriculture, Ecosystems & Environment, 60, 81–96.

    Article  CAS  Google Scholar 

  • Yarrow, D. (1998). Methods for the isolation, maintenance and identification of yeasts. In C. P. Kurtzman & J. W. Fell (Eds.), The yeast, a taxonomic study (pp. 77–100). Amsterdam: Elsevier Science.

    Google Scholar 

  • Zapata, A., Malato, S., Sanchez-Perez, J. A., Oller, I., & Maldonado, M. I. (2010). Scale-up strategy for a combined solar photo-Fenton/biological system for remediation of pesticide-contaminated water. Catalysis Today, 151, 100–106. doi:10.1016/j.cattod.2010.01.034.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the help and cooperation provided by Consorzio Sviluppo Industriale Valle Biferno, Termoli, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lolita Liberatore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liberatore, L., Bressan, M., Belli, C. et al. Chemical and Biological Combined Treatments for the Removal of Pesticides from Wastewaters. Water Air Soil Pollut 223, 4751–4759 (2012). https://doi.org/10.1007/s11270-012-1230-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1230-5

Keywords

Navigation