Skip to main content
Log in

The Effect of the Organic Matter Composition on POP Accumulation in Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The effect of different humic fractions on polychlorinated biphenyl (PCB) contamination in soils was tested in the field by means of 53 soil samples from a high-altitude grassland plateau in the Italian Alps. Three humic fractions (humin, humic acids, and fulvic acids) were characterized in parallel by quantifying 12 PCB congeners to establish a direct relationship between PCB levels and humic fraction concentrations. Humin (the most hydrophobic fraction) appears to be the most closely correlated with the amount of PCBs in soil (R 2 = 0.83), while fulvic acid shows the lowest correlation (R 2 = 0.49). The idea of preferential sorption of hydrophobic compounds in the humin fraction is discussed, and the humin carbon content (f huminC) is proposed as an improved parameter for evaluating the potential for POP accumulation in soils, replacing total organic carbon (f oc). Congener studies revealed that penta- and hexa-substituted-CBs show the optimal combination of physicochemical properties for equilibrating with the humin content in soil. Moreover, f huminC/f oc is conceptually equivalent to the empirical coefficients used in predictive K sa equations. In our samples, the f huminC/f oc was 0.55, a value in between the empirical coefficients proposed in the literature. In predictive equations, the use of f huminC instead f oc avoids the necessity of using an empirical parameter for a ‘generic’ condition by introducing an experimental parameter (f huminC) that takes into account local conditions (organic matter composition).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad, R., Kookana, R. S., Alston, A. M., & Skjemstad, J. O. (2001). The nature of soil organic matter affects sorption of pesticides. 1. relationships with carbon chemistry as determined by 13C CPMAS NMR spectroscopy. Environmental Science and Technology, 35, 878–884.

    Article  CAS  Google Scholar 

  • Albers, C. N., Banta, G. T., Jacobsen, O. S., & Hansen, P. E. (2008). Characterization and structural modelling of humic substances in field soil displaying significant differences from previously proposed structures. European Journal of Soil Science, 59, 693–705.

    Article  CAS  Google Scholar 

  • Anderson, D. W., & Schoenau, J. J. (2008). Soil humus fraction. In M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and methods of analysis (pp. 675–680). Boca Raton: CRC Press.

    Google Scholar 

  • Andreux, F. (1996). Humus in world soil. In A. Piccolo (Ed.), Humic substance in terrestrial ecosystem (pp. 45–100). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Armitage, J. M., Hanson, M., Axelman, J., & Cousins, I. T. (2006). Levels and vertical distribution of PCBs in agricultural and natural soils from Sweden. Science of the Total Environment, 371, 344–352.

    Article  CAS  Google Scholar 

  • Bleam, W. F. (2011). Soil and environmental chemistry. Amsterdam: Academic Press.

    Google Scholar 

  • Chiou, C. T., McGroddy, S. E., & Kile, D. E. (1998). Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environmental Science and Technology, 32, 264–269.

    Article  CAS  Google Scholar 

  • Cousins, I. T., Gevao, B., & Jones, K. J. (1999). Measuring and modeling the vertical distribution of semivolatile organic compounds in soil. 1: PCB and PAH soil core data. Chemosphere, 39, 2507–2518.

    Article  CAS  Google Scholar 

  • Dalla Valle, M., Jurado, E., Dachs, J., Sweetman, A. J., & Jones, K. C. (2005). The maximum reservoir capacity of soils for persistent organic pollutants: Implication for global cycling. Environmental Pollution, 134, 153–164.

    Article  CAS  Google Scholar 

  • Daly, G. L., Lei, Y. D., Castillo, L. E., Muir, D. C. G., & Wania, F. (2007). Polycyclic aromatic hydrocarbons in Costa Rican air and soil: A tropical/temperate comparison. Atmospheric Environment, 41, 7339–7350.

    Article  CAS  Google Scholar 

  • Doick, K. J., Burauel, P., Jones, K. C., & Semple, K. T. (2005). Distribution of aged 14C-PCB and 14C-PAH residues in particle-size and humic fractions of an agricultural soil. Environmental Science and Technology, 39, 6575–6583.

    Article  CAS  Google Scholar 

  • Guazzoni, N., Comolli, R., Mariani, L., Cola, G., Parolini, M., Binelli, A., et al. (2011). Meteorological and pedological influence on the PCBs distribution in mountain soils. Chemosphere, 83, 186–192.

    Article  CAS  Google Scholar 

  • Hayes, M. H. B., & Clapp, C. E. (2001). Humic substances: Considerations of compositions, aspects of structure, and environmental influences. Soil Science, 166, 723–737.

    Article  CAS  Google Scholar 

  • Hayes, M. H. B., & Malcolm, R. L. (2001). Structures of humic substances. In C. E. Clapp, M. H. B. Hayes, N. Senesi, P. Bloom, & P. M. Jardine (Eds.), Humic substances and chemical contaminants (pp. 3–40). Madison: Soil Science Society of America.

    Google Scholar 

  • Hayes, M. H. B., MacCarthy, P., Malcolm, R. L., & Swift, R. S. (1989). Humic substances II. Search of structure. Chichester: Wiley.

    Google Scholar 

  • Hippelein, M., & McLachlan, M. S. (1998). Soil/Air partitioning of semivolatile organic compounds. 1. Method development and influence of physical-chemical properties. Environmental Science and Technology, 32, 310–316.

    Article  CAS  Google Scholar 

  • Huang, W., Peng, P., Yu, Z., & Fu, J. (2003). Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Applied Geochemistry, 18, 955–972.

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB. (2006). World reference base for soil resources 2006. World Soil Resources Reports No. 103. Rome: FAO.

    Google Scholar 

  • Kang, S., & Xing, B. (2005). Phenanthrene sorption to sequentially extracted soil humic acids and humins. Environmental Science and Technology, 39, 134–140.

    Article  CAS  Google Scholar 

  • Karickhoff, S. W. (1981). Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere, 10, 833–846.

    Article  CAS  Google Scholar 

  • Kögel-Knabner, I. (1993). Biodegradation and humification processes in forest soils. In J. M. Bollag & G. Stotzky (Eds.), Soil biochemistry (pp. 101–127). New York: Marcel Dekker Inc.

    Google Scholar 

  • Kohl, S. D., & Rice, J. A. (1998). The binding of contaminants to humin: A mass balance. Chemosphere, 36, 251–261.

    Article  CAS  Google Scholar 

  • Kononova, M. M. (1966). Soil organic matter. Its nature, its role in soil formation and in soil fertility. Oxford: Pergamon Press.

    Google Scholar 

  • Krauss, M., Wilcke, W., & Zech, W. (2000). Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in forest soils: depth distribution as indicator of different fate. Environmental Pollution, 110, 78–88.

    Article  Google Scholar 

  • Lyman, W. J. (1990). Chapter 4. In W. J. Lyman, W. F. Reehl, & D. H. Rosenblatt (Eds.), Handbook of chemical property estimation methods. Washington, DC: American Chemical Society.

    Google Scholar 

  • MacCarthy, P. (2001). The principles of humic substances. Soil Science, 166, 738–751.

    Article  CAS  Google Scholar 

  • Meijer, S. N., Steinnes, E., Ockenden, W. A., & Jones, K. C. (2002). Influence of environmental variables on the spatial distribution of PCBs in Norwegian and U.K. soils: Implications for global cycling. Environmental Science and Technology, 36, 2146–2153.

    Article  CAS  Google Scholar 

  • Meijer, S. N., Ockenden, W. A., Sweetman, A. J., Breivik, K., Grimalt, J. O., & Jones, K. C. (2003). Global distribution and budget of PCBs and HCB in background surface soils: Implications for sources and environmental processes. Environmental Science and Technology, 37, 667–672.

    Article  CAS  Google Scholar 

  • Moeckel, C., Nizzetto, L., Di Guardo, A., Steinnes, E., Freppaz, M., Filippa, G., et al. (2008). Persistent organic pollutants in boreal and montane soil profiles: Distribution, evidence of processes and implications for global cycling. Environmental Science and Technology, 42, 8374–8380.

    Article  CAS  Google Scholar 

  • Nelson, D.W & Sommers, L.E. (1996). Total carbon, organic carbon, and organic matter (pp 961–1010). In: J.M. Bartels et al. (Eds) Methods of soil analysis: Part 3 chemical methods (3rd ed). ASA and SSSA Book Series 5, Madison, WI.

  • Pan, B., Xing, B. S., Liu, W. X., Tao, S., Lin, X. M., Zhang, X. M., et al. (2006). Distribution of sorbed phenanthrene and pyrene in different humic fractions of soils and importance of humin. Environmental Pollution, 143, 24–33.

    Article  CAS  Google Scholar 

  • Piccolo, A., Celano, G., & Conte, P. (1996). Adsorption of glyphosate by humic substances. Journal of Agricultural and Food Chemistry, 44, 2442–2446.

    Article  CAS  Google Scholar 

  • Piccolo, A., Conte, P., Scheunert, I., & Paci, M. (1998). Atrazine interaction with soil humic substances of different molecular structure. Journal of Environmental Quality, 27, 1324–1333.

    Article  CAS  Google Scholar 

  • Pignatello, J. J. (1998). Soil organic matter as a nanoporous sorbent of organic pollutants. Advances in Colloid and Interface Science, 76–77, 445–467.

    Article  Google Scholar 

  • Ribes, A., Grimalt, J. O., Torres García, C. J., & Cuevas, E. (2002). Temperature and organic matter dependence of distribution of organochlorine compounds in mountain soils from the subtropical Atlantic (Teide, Tenerife Island). Environmental Science and Technology, 36, 1879–1885.

    Article  CAS  Google Scholar 

  • Rice, A. J. (2001). Humin. Soil Science, 166, 848–857.

    Article  CAS  Google Scholar 

  • Rice, A. J., & MacCarthy, P. (1991). Statistical evaluation of the elemental composition of humic substances. Organic Geochemistry, 17, 635–648.

    Article  CAS  Google Scholar 

  • Rutherford, D. W., Chiou, C. T., & Kile, D. E. (1992). Influence of soil organic matter composition on the partition of organic compounds. Environmental Science and Technology, 26, 336–340.

    Article  CAS  Google Scholar 

  • Růžičková, P., Klánová, J., Čupr, P., Lammel, G., & Holoubek, I. (2008). An Assessment of air-soil exchange of polychlorinated biphenyls and organochlorine pesticides across Central and Southern Europe. Environmental Science and Technology, 42, 179–185.

    Article  Google Scholar 

  • Seth, R., Mackay, D., & Muncke, J. (1999). Estimating the organic carbon partition coefficient and its variability for hydrophobic chemicals. Environmental Science and Technology, 33, 2390–2394.

    Article  CAS  Google Scholar 

  • SISS-Società Italiana della Scienze del Suolo (2007). Escursione scientifica del convegno nazionale: ‘La scienza del suolo nei territori montani e collinari’. Milano-Chiavenna, 9–13 Luglio.

  • Stevenson, F. J. (1994). Humus chemistry: Genesis, composition, reactions. New York: John Wiley and Sons.

    Google Scholar 

  • Stevenson, F. J., & Cole, M. A. (1999). Cycles of soil: Carbon, nitrogen, phosphorus, sulphur micronutrients. New York: John Wiley and Sons.

    Google Scholar 

  • Sweetman, A. J., Dalla Valle, M., Prevedouros, K., & Jones, K. C. (2005). The role of soil organic carbon in the global cycling of persistent organic pollutants (POPs): Interpreting and modelling field data. Chemosphere, 60, 959–972.

    Article  CAS  Google Scholar 

  • Tan, K. H. (2003). Humic matter in soil and the environment. New York: Marcel Dekker.

    Book  Google Scholar 

  • Tato, L., Tremolada, P., Ballabio, C., Guazzoni, N., Parolini, M., Caccianiga, M., et al. (2011). Seasonal and spatial variability of polychlorobiphenyls (PCBs) in vegetation and cow milk from a high altitude pasture in the Italian Alps. Environmental Pollution, 159, 2656–2664.

    Article  CAS  Google Scholar 

  • Tremolada, P., Villa, S., Bazzarin, P., Bizzotto, E., Comolli, R., & Vighi, M. (2008). POPs in mountain soils from the Alps and Andes: Suggestions for a ‘precipitation effect’ on altitudinal gradients. Water, Air and Soil Pollution, 188, 93–109.

    Article  CAS  Google Scholar 

  • Tremolada, P., Parolini, M., Binelli, A., Ballabio, C., Comolli, R., & Provini, A. (2009). Preferential retention of POPs on the northern aspect of mountains. Environmental Pollution, 157, 3298–3307.

    Article  CAS  Google Scholar 

  • Weiss, P., Riss, A., Hartl, W., Lorbeer, G., & Hagenmeier, H. (1993). Chlorinated hydrocarbons in soil profiles of two forest sites in the Linz area (upper Austria). Organohalogen Compouds, 12, 255–258.

    CAS  Google Scholar 

  • Wen, B., Zhang, J.-J., Zhang, S.-Z., Shan, X.-Q., Khan, S. U., & Xing, B. (2007). Phenanthrene sorption to soil humic acid and different humin fractions. Environmental Science and Technology, 41, 3165–3171.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Tremolada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tremolada, P., Guazzoni, N., Smillovich, L. et al. The Effect of the Organic Matter Composition on POP Accumulation in Soil. Water Air Soil Pollut 223, 4539–4556 (2012). https://doi.org/10.1007/s11270-012-1216-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1216-3

Keywords

Navigation