Advertisement

Water, Air, & Soil Pollution

, Volume 223, Issue 7, pp 4443–4457 | Cite as

Bioinformatic Analyses of Bacterial Mercury Ion (Hg2+) Transporters

  • Timothy Mok
  • Jonathan S. Chen
  • Maksim A. Shlykov
  • Milton H. SaierJr
Article

Abstract

Currently, there are five known types of mercury transporters in bacteria: MerC, MerE, MerF, MerH, and MerT. Their general function is to mediate mercuric ion uptake into the cell in preparation for reduction to Hg°. They are present in several bacterial phyla and comprise five distinct families. We have utilized standard statistical bioinformatic tools and the superfamily principle to show that they are related by common descent. After using programs such as Global Alignment Program and SSearch to establish homology, we aligned and analyzed their amino acid sequences to find a single well conserved motif. Although these proteins exhibit 2, 3, or 4 transmembrane helical segments (TMSs), TMSs 1 and 2 are common to all superfamily members. An ancestral sequence was determined, and reliable phylogenetic trees were constructed. The results support the conclusion of homology, establishing that these proteins belong to a single superfamily. This important discovery allows extrapolation of information about structure, function, and mechanism from one protein to all superfamily members to degrees inversely proportional to their phylogenetic distances.

Keywords

Transport Hg2+ channel Protein superfamily Bioremediation Bacteria 

Notes

Acknowledgments

This work was supported by NIH grant GM 077402.

Supplementary material

11270_2012_1208_MOESM1_ESM.ppt (1.2 mb)
ESM 1 PPT 1,178 kb

References

  1. Aleo, M. F., Morandini, F., Bettoni, F., Giuliani, R., Rovetta, F., Steimberg, N., et al. (2005). Endogenous thiols and MRP transporters contribute to Hg2+ efflux in HgCl2-treated tubular MDCK cells. Toxicology, 206(1), 137–151.CrossRefGoogle Scholar
  2. Bailey, T. L., & Elkan, C. (1995). The value of prior knowledge in discovering motifs with MEME [Comparative Study Research Support, U.S. Gov't, P.H.S.]. Proceedings of the International Conference on Intelligent Systems for Molecular Biology 3: 21–29.Google Scholar
  3. Barkay, T., Miller, S. M., & Summers, A. O. (2003). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews, 27(2–3), 355–384.CrossRefGoogle Scholar
  4. Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 40(12), 1335–1351.CrossRefGoogle Scholar
  5. Bose-O'Reilly, S., McCarty, K. M., Steckling, N., & Lettmeier, B. (2010). Mercury exposure and children's health. Current Problems in Pediatric and Adolescent Health Care, 40(8), 186–215.CrossRefGoogle Scholar
  6. Braga, M. C., Shaw, G., & Lester, J. N. (2000). Mercury modeling to predict contamination and bioaccumulation in aquatic ecosystems. Reviews of Environmental Contamination and Toxicology, 164, 69–92.Google Scholar
  7. Bridges, C. C., Joshee, L., & Zalups, R. K. (2011). MRP2 and the handling of mercuric ions in rats exposed acutely to inorganic and organic species of mercury. Toxicology and Applied Pharmacology, 251(1), 50–58.CrossRefGoogle Scholar
  8. Cai, W., Pei, J., & Grishin, N. V. (2004). Reconstruction of ancestral protein sequences and its applications. BMC Evolutionary Biology, 4(33). doi: 10.1186/1471-2148-4-33.
  9. Chen, J. S., Reddy, V., Chen, J. H., Shlykov, M. A., Zheng, W. H., Cho, J., et al. (2011). Phylogenetic characterization of transport protein superfamilies: superiority of SuperfamilyTree programs over those based on multiple alignments. Journal of Molecular Microbiology and Biotechnology, 21(3–4), 83–96.Google Scholar
  10. Devereux, J., Haeberli, P., & Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research, 12(1 Pt 1), 387–395.CrossRefGoogle Scholar
  11. Evaluation of certain contaminants in food (2011). [Consensus Development Conference]. World Health Organization technical report series (959), 1–105.Google Scholar
  12. Kiyono, M., Sone, Y., Nakamura, R., Pan-Hou, H., & Sakabe, K. (2009). The MerE protein encoded by transposon Tn21 is a broad mercury transporter in Escherichia coli. FEBS Letters, 583(7), 1127–1131.CrossRefGoogle Scholar
  13. Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology, 305(3), 567–580.CrossRefGoogle Scholar
  14. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948.CrossRefGoogle Scholar
  15. Li, W., Jaroszewski, L., & Godzik, A. (2001). Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics, 17(3), 282–283.CrossRefGoogle Scholar
  16. Li, W., Jaroszewski, L., & Godzik, A. (2002). Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics, 18(1), 77–82.CrossRefGoogle Scholar
  17. Mathema, V. B., Thakuri, B. C., & Sillanpaa, M. (2011). Bacterial mer operon-mediated detoxification of mercurial compounds: a short review. Archives of Microbiology, 193(12), 837–844.Google Scholar
  18. Qian, H., Sahlman, L., Eriksson, P. O., Hambraeus, C., Edlund, U., & Sethson, I. (1998). NMR solution structure of the oxidized form of MerP, a mercuric ion binding protein involved in bacterial mercuric ion resistance. Biochemistry, 37(26), 9316–9322.CrossRefGoogle Scholar
  19. Saier, M. H., Jr. (2003). Tracing pathways of transport protein evolution. Molecular Microbiology, 48(5), 1145–1156.CrossRefGoogle Scholar
  20. Saier, M. H., Jr., Yen, M. R., Noto, K., Tamang, D. G., & Elkan, C. (2009). The Transporter Classification Database: recent advances. [Research Support, N.I.H., Extramural]. Nucleic Acids Research, 37(Database issue), D274–278.Google Scholar
  21. Schue, M., Glendinning, K. J., Hobman, J. L., & Brown, N. L. (2008). Evidence for direct interactions between the mercuric ion transporter (MerT) and mercuric reductase (MerA) from the Tn501 mer operon. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine, 21(2), 107–116.CrossRefGoogle Scholar
  22. Schue, M., Dover, L. G., Besra, G. S., Parkhill, J., & Brown, N. L. (2009). Sequence and analysis of a plasmid-encoded mercury resistance operon from Mycobacterium marinum identifies MerH, a new mercuric ion transporter. Journal of Bacteriology, 191(1), 439–444.CrossRefGoogle Scholar
  23. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876–4882.CrossRefGoogle Scholar
  24. Vernhet, L., Allain, N., Bardiau, C., Anger, J. P., & Fardel, O. (2000). Differential sensitivities of MRP1-overexpressing lung tumor cells to cytotoxic metals. Toxicology, 142(2), 127–134.CrossRefGoogle Scholar
  25. Wilson, J. R., Leang, C., Morby, A. P., Hobman, J. L., & Brown, N. L. (2000). MerF is a mercury transport protein: different structures but a common mechanism for mercuric ion transporters? FEBS Letters, 472(1), 78–82.CrossRefGoogle Scholar
  26. Yamaguchi, A., Tamang, D. G., & Saier, M. H. (2007). Mercury transport in bacteria. Water, Air, and Soil Pollution, 182(1–4), 219–234.CrossRefGoogle Scholar
  27. Yen, M. R., Choi, J., & Saier, M. H., Jr. (2009). Bioinformatic analyses of transmembrane transport: novel software for deducing protein phylogeny, topology, and evolution. Journal of Molecular Microbiology and Biotechnology, 17(4), 163–176.CrossRefGoogle Scholar
  28. Yen, M. R., Chen, J. S., Marquez, J. L., Sun, E. I., & Saier, M. H. (2010). Multidrug resistance: phylogenetic characterization of superfamilies of secondary carriers that include drug exporters. Methods in Molecular Biology, 637, 47–64.CrossRefGoogle Scholar
  29. Zhai, Y., & Saier, M. H., Jr. (2001a). A web-based program (WHAT) for the simultaneous prediction of hydropathy, amphipathicity, secondary structure and transmembrane topology for a single protein sequence. Journal of Molecular Microbiology and Biotechnology, 3(4), 501–502.Google Scholar
  30. Zhai, Y., & Saier, M. H., Jr. (2001b). A web-based program for the prediction of average hydropathy, average amphipathicity and average similarity of multiply aligned homologous proteins. Journal of Molecular Microbiology and Biotechnology, 3(2), 285–286.Google Scholar
  31. Zhai, Y., & Saier, M. H., Jr. (2002). A simple sensitive program for detecting internal repeats in sets of multiply aligned homologous proteins. Journal of Molecular Microbiology and Biotechnology, 4(4), 375–377.Google Scholar
  32. Zhai, Y., Tchieu, J., & Saier, M. H., Jr. (2002). A web-based Tree View (TV) program for the visualization of phylogenetic trees. Journal of Molecular Microbiology and Biotechnology, 4(1), 69–70.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Timothy Mok
    • 1
  • Jonathan S. Chen
    • 1
  • Maksim A. Shlykov
    • 1
  • Milton H. SaierJr
    • 1
  1. 1.Division of Biological SciencesUniversity of California at San DiegoLa JollaUSA

Personalised recommendations