Skip to main content

Advertisement

Log in

Enhanced Phenol and Chlorinated Phenols Removal by Combining Ozonation and Biodegradation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Water treatment for wastewater containing phenols and their chlorinated variations has attracted important research efforts. Phenol’s high toxicity makes them a good model to test possible water treatment based on biological and/or chemical methods. High concentrations of phenols may be treated by pure biological schemes. However, chlorinated phenols are very toxic for many microorganisms. Therefore, mixed treatment trains can be proposed to solve the treatment of this class of organics. In this study, the ozonation was used as pretreatment to decompose chlorinated phenols. Besides, this study describes how the microbial consortiums were adapted to handle ozonation by-products. The biodegradation of different phenol concentrations from 50 to 1,500 mg/L was evaluated using preadapted microbial consortia in batch and in a trickling packed-bed reactor (TPBR). Under batch conditions, phenol was efficiently removed up to 500 mg/L. For every phenol concentration evaluated, higher degradation rates were obtained in TPBR. The chlorophenols were found to be poorly degraded by the pure biological treatment, 4-CPh was not degraded during the biological process and 2,4-DCPh was only 40 % degraded after 250 h of culture. By combining the chemical (as pretreatment) and the biological processes, 85 % of 4-CPh was removed, while the degradation of the 2,4-DCPh was enhanced from 40 to 87 %. The predominant bacteria found in the preadapted cultures were Xanthomonas sp., Ancylobacter sp., and Rhodopseudomonas. Total treatment period was reduced from several weeks to some days. This information reflects the benefits offered by the mixed water treatment train proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abuhamed, T., Bayraktar, E., Mehmetoglu, T., & Mehmetoglu, U. (2004). Kinetics model for the growth of Pseudomonas putida F1 during benzene, toluene and phenol biodegradation. Process Biochemistry, 39, 983–988.

    Article  CAS  Google Scholar 

  • Adav, S. S., Chen, M. Y., Lee, D. J., & Ren, N. Q. (2007). Degradation phenol by Acinetobacter strain isolated from aerobic granules. Chemosphere, 67, 1566–1572.

    Article  CAS  Google Scholar 

  • Aparicio, M. A., Eiroa, M., Kennes, C., & Veiga, M. C. (2007). Combined post-ozonation and biological treatment of recalcitrant wastewater from a resin-producing factory. Journal of Hazardous Materials, 143, 285–290.

    Article  CAS  Google Scholar 

  • Bajaj, M., Gallert, C., & Winter, J. (2009). Phenol degradation kinetics of an aerobic mixed culture. Biochemical Engineering Journal, 46, 205–209.

    Article  CAS  Google Scholar 

  • Banerjee, A., & Ghosha, A. K. (2010). Isolation and characterization of hyper phenol tolerant Bacillus sp from oil refinery and exploration sites. Journal of Hazardous Materials, 173, 783–788.

    Article  Google Scholar 

  • Beltrán, F. J., Encinar, J. M., & González, J. F. (1997). Industrial wastewater advanced oxidation. Ozone combined with hydrogen peroxide or UV radiation. Water Research, 31, 2415–2428.

    Article  Google Scholar 

  • Beltran-Heredia, J., Torregrosa, J., Dominguez, J. R., & Garcia, J. (2000). Aerobic biological treatment of black table olive washing wastewaters: effect of an ozonation stage. Process Biochemistry, 35, 1183–1190.

    Article  CAS  Google Scholar 

  • Benitez, F. J., Real, F. J., Acero, J. L., Garcia, J., & Sanchez, M. (2003). Kinetics of the ozonation and aerobic biodegradation of wine vinasses in discontinuous and continuous processes. Journal of Hazardous Materials, B101, 203–218.

    Article  Google Scholar 

  • Chaichanawong, J., Yamamoto, T., & Ohmori, T. (2010). Enhancement effect of carbon adsorbent on ozonation of aqueous phenol. Journal of Hazardous Materials, 175, 673–679.

    Article  CAS  Google Scholar 

  • Chen, K. C., Lin, Y. H., Chen, W. H., & Liu, Y. C. (2002). Degradation of phenol by PAA-immobilized Candida tropicalis. Enzyme and Microbial Technology, 31, 490–497.

    Article  CAS  Google Scholar 

  • Contreras, S., Rodriguez, M., Al Momani, F., Sans, C., & Esplugas, S. (2003). Contribution of the ozonation pre-treatment to the biodegradation of aqueous solutions of 2,4-dichlorophenol. Water Research, 37, 3164–3317.

    Article  CAS  Google Scholar 

  • Derudi, M., Venturini, G., Lombardi, G., Nano, G., & Rota, R. (2007). Biodegradation combined with ozone for the remediation of contaminated soils. European Journal of Soil Biology, 43, 297–303.

    Article  CAS  Google Scholar 

  • Dong, Y., Yang, H., He, K., Wu, X., & Zhang, A. (2008). Catalytic activity and stability of Y zeolite for phenol degradation in the presence of ozone. Applied Catalysis B: Environmental, 82, 163–168.

    Article  CAS  Google Scholar 

  • Edalatmanesh, M., Mehrvar, M., & Dhib, R. (2008). Optimization of phenol degradation in a combined photochemical–biological wastewater treatment system. Chemical Engineering Research and Design, 86, 1243–1252.

    Article  CAS  Google Scholar 

  • El-Naas, M. H., Al-Zuhair, S., & Makhlouf, S. (2010). Batch degradation of phenol in a spouted bed bioreactor system. Journal of Industrial and Engineering Chemistry, 16, 267–272.

    Article  CAS  Google Scholar 

  • Essam, T., Amin, M. A., Tayeb, O. E., Mattiasson, B., & Guieysse, B. (2010). Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1. Journal of Hazardous Materials, 173, 783–788.

    Article  CAS  Google Scholar 

  • Garza, G. (1985). Tratamiento de efluentes de la industria de la curtiduría. In Reunión conjunta en León Guanajuato (pp. 165–207). Mexico: Sociedad Mexicana de Aguas A.C.

    Google Scholar 

  • Godjevargova, T., Ivanova, D., Aleksieva, Z., & Dimova, N. (2003). Biodegradation of toxic organic components from industrial phenol producing wastewater by free and immobilized Trichospora cutaneum R 57. Process Biochemistry, 38, 915–920.

    Article  CAS  Google Scholar 

  • Godjevargova, T., Ivanova, D., Aleksieva, Z., & Dimova, N. (2006). Biodegradation of phenol by immobilized Trichosporon cutaneum R 57 on modified polymer membranes. Process Biochemistry, 41, 2342–2346.

    Article  CAS  Google Scholar 

  • Grau, P. (1991). Textile industry wastewater’s treatment. Water Science and Technology, 24, 97–103.

    CAS  Google Scholar 

  • Harrison, F. H., & Harwood, C. S. (2005). The pimFABCDE operon from Rhodopseudomonas palustris mediates dicarboxylic acid degradation and participates in anaerobic benzoate degradation. Microbiology, 151, 727–736.

    Article  CAS  Google Scholar 

  • Higgins, D. G., Thompson, J. D., & Gibson, T. J. (1996). Using CLUSTAL for multiple sequence alignments. Methods in Enzymology, 266, 383–402.

    Article  CAS  Google Scholar 

  • Hong, P. K. A., & Zeng, Y. (2002). Degradation of pentachlorophenol by ozonation and biodegradability of intermediates. Water Research, 36, 4243–4254.

    Article  CAS  Google Scholar 

  • Jiang, Y., Wen, J., Caiyin, Q., Lin, L., & Hu, Z. (2006). Mutant AFM 2 of Alcaligenes feacalis for phenol biodegradation using He–Ne laser irradiation. Chemosphere, 65, 1236–1241.

    Article  CAS  Google Scholar 

  • Kamal, V. S., & Wyndham, R. C. (1990). Anaerobic phototrophic metabolism of 3-chlorobenzoate by Rhodopseudomonas palustris WS17. Applied and Environmental Microbiology, 56, 3871–3873.

    CAS  Google Scholar 

  • Kargi, F., & Eker, S. (2005). Removal of 2,4-dichlorophenol and toxicity from synthetic wastewater in a rotating perforated tube biofilm reactor. Process Biochemistry, 40, 2105–2111.

    Article  CAS  Google Scholar 

  • Kasikara, N., & Telefoncu, A. (2005). Biodegradation of phenol by Pseudomonas putida immobilized on activated pumice particles. Process Biochemistry, 40, 1807–1814.

    Article  Google Scholar 

  • Khokhawala, I. M., & Gogate, P. R. (2010). Degradation of phenol using a combination of ultrasonic and UV irradiations at pilot scale operation. Ultrasonics Sonochemistry, 17, 833–838.

    Article  CAS  Google Scholar 

  • Kumar, A., Kumar, S., & Kumar, S. (2005). Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochemical Engineering Journal, 22, 151–159.

    Article  CAS  Google Scholar 

  • Manickam, N., Misra, R., & Mayilraj, S. (2007). A novel pathway for the biodegradation of γ-hexachlorocyclohexane by a Xanthomonas sp. strain ICH12. Journal of Applied Microbiology, 102, 1468–1478.

    Article  CAS  Google Scholar 

  • Nair, I. C., Jayachandran, K., & Shashidhar, S. (2007). Treatment of paper factory effluent using a phenol degrading Alcaligenes sp. under free and immobilized conditions. Bioresource Technology, 98, 714–716.

    Article  CAS  Google Scholar 

  • Nam, K., & Kukor, J. (2000). Combined ozonation and biodegradation for remediation of mixtures of polycyclic aromatic hydrocarbons in soil. Biodegradation, 11, 1–9.

    Article  CAS  Google Scholar 

  • Nam, K., Rodríguez, W., & Kukor, J. (2001). Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere, 45, 11–20.

    Article  CAS  Google Scholar 

  • Norma Oficial Mexicana NOM-127-SSA1-1994 (1994). Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización, Mexico.

  • Poznyak, T. I., & Vivero, J. L. (2005). Degradation of aqueous phenol and chlorinated phenols by ozone. Ozone Science and Engineering, 27, 447–458.

    Article  CAS  Google Scholar 

  • Poznyak, T., Chairez, I., & Poznyak, A. (2005). Application of the model—free neural observer to the phenols ozonation in water: simulation and kinetic parameters identification. Water Research, 39, 2611–2620.

    Article  CAS  Google Scholar 

  • Prieto, M. B., Hidalgo, A., Serra, J. A., & Llama, M. J. (2002). Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite in a packed-bed reactor. Journal of Biotechnology, 97, 1–11.

    Article  CAS  Google Scholar 

  • Ramirez-Saenz, D., Zarate-Segura, P. B., Guerrero-Barajas, C., & Garcia-Peña, E. I. (2009). H2S and volatile fatty acids elimination by biofiltration: clean-up process for biogas potential use. Journal of Hazardous Materials, 163, 1272–1281.

    Article  CAS  Google Scholar 

  • Saravanan, P., Pakshirajan, K., & Saha, P. (2008). Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor. Bioresource Technology, 99, 205–209.

    Article  CAS  Google Scholar 

  • Shetty, K. V., Kalifathulla, I., & Srinikethan, G. (2007). Performance of pulsed plate bioreactor for biodegradation of phenol. Journal of Hazardous Materials, 140, 346–352.

    Article  CAS  Google Scholar 

  • Stoilova, I., Krastanov, A., Stanchev, V., Daniel, D., Gerginova, M., & Alexieva, Z. (2006). Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells. Enzyme and Microbial Technology, 39, 1036–1041.

    Article  CAS  Google Scholar 

  • US EPA Available at http://www.epa.gov/waterscience/methods/pollutants.htm. Accessed 2010

  • Wang, C. C., Lee, C. M., & Kuan, C. H. (2000). Removal of 2,4-dichlorophenol by suspended and immobilized Bacillus insolitus. Chemosphere, 41, 447–452.

    Article  CAS  Google Scholar 

  • Wei, G., Yu, J., Zhu, Y., Chen, W., & Wang, L. (2008). Characterization of phenol degradation by Rhizobium sp. CCNWTB 701 isolated from Astragalus chrysopteru in mining tailing region. Journal of Hazardous Materials, 151, 111–117.

    Article  CAS  Google Scholar 

  • Van den Wijngaard, A. J., Prins, J., Smal, A. C., & Janssen, D. B. (1993). Degradation of 2-chloroethylvinylether by Ancylobacter aquaticus AD25 and AD27. Applied and Environmental Microbiology, 59, 2777–2783.

    Google Scholar 

  • Yan, J., Jianping, W., Hongmei, L., Suliang, Y., & Zongding, H. (2005). The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis. Biochemical Engineering Journal, 24, 243–247.

    Article  Google Scholar 

  • Zhao, G., Zhou, L., Li, Y., Liu, X., Ren, X., & Liu, X. (2009). Enhancement of phenol degradation using immobilized microorganisms and organic modified montmorillonite in a two-phase partitioning bioreactor. Journal of Hazardous Materials, 169, 402–410.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the experimental work conducted by Hector Huerta Arellanes and data analysis developed by Ricardo Axayacatl Gonzalez Garcia. This work was supported through funding provided by CONACYT grants 49367, 60976.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvia Inés García-Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Peña, E.I., Zarate-Segura, P., Guerra-Blanco, P. et al. Enhanced Phenol and Chlorinated Phenols Removal by Combining Ozonation and Biodegradation. Water Air Soil Pollut 223, 4047–4064 (2012). https://doi.org/10.1007/s11270-012-1172-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1172-y

Keywords