Skip to main content
Log in

Removal of Bisphenol A and 17β-Estradiol by Single-Walled Carbon Nanotubes in Aqueous Solution: Adsorption and Molecular Modeling

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotubes, both before (SWNTs) and after treatment (t-SWNTs) with acidified ammonium persulfate, were successfully used to adsorb bisphenol A (BPA) and 17β-estradiol (E2) from aqueous systems. The surface characteristics of the SWNTs and t-SWNTs were analyzed by measuring their surface charge and by imaging their morphological properties through transmission electron microscopy. The extent of defects on the SWNT scaffold generated through acid etching was analyzed by Raman spectroscopy. A total of 19.4, 15.4, and 14.3 mg/g of BPA was adsorbed on SWNTs, while a total of 8.0, 6.4, and 5.1 mg/g was adsorbed on t-SWNTs with a 72-h contact time at 280, 295, and 315 K, respectively. A significantly high fraction of E2 (27.2 mg/g) was absorbed by both SWNTs and t-SWNTs, as compared to BPA. The adsorption kinetics was analyzed using a pseudo-second-order model. Sorption experiments showed that t-SWNTs adsorbed less than half as much BPA as SWNTs, but their E2 adsorption was similar. The sorption mechanism was investigated by performing molecular-level calculations. Adsorption energies calculated using density functional theory show preferential sorption of E2 to SWNTs and graphene (−26.2 kcal/mol on SWNT and −34.1 kcal/mol on graphene) compared to BPA (−17.1 kcal/mol on SWNT and −22.5 kcal/mol on graphene), which were consistent with the experimental findings. Thus, ab initio calculations can mechanistically explain the adsorption differences of BPA and E2 on SWNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agnihotri, S., Mota, J. P. B., Rostam-Abadi, M., & Rood, M. J. (2005). Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation. Langmuir, 21, 896–904.

    Article  CAS  Google Scholar 

  • Baughman, R. H., Zakhidov, A. A., & de Heer, W. A. (2002). Carbon nanotubes: the route toward applications. Science, 297, 787–792.

    Article  CAS  Google Scholar 

  • Bautista-Toledo, I., Ferro-García, M. A., Rivera-Utrilla, J., Moreno-Castilla, C., & Vegas Fernández, F. J. (2005). Bisphenol A removal from water by activated carbon: effects of carbon characteristics and solution chemistry. Environmental Science & Technology, 39, 6246–6250.

    Article  CAS  Google Scholar 

  • Blanchard, G., Maunaye, M., & Martin, G. (1984). Removal of heavy metals from waters by means of natural zeolites. Water Research, 18, 1501–1507.

    Article  CAS  Google Scholar 

  • Bode, B. M., & Gordon, M. S. (1998). MacMolPlt: a graphical user interface for GAMESS. Journal of Molecular Graphics & Modelling, 16, 133–138.

    Article  CAS  Google Scholar 

  • Burns, J. L., Y-d, Y., Jameson, G. J., & Biggs, S. (1997). A light scattering study of the fractal aggregation behavior of a model colloidal system. Langmuir, 13, 6413–6420.

    Article  CAS  Google Scholar 

  • Chen, S., Shen, W., Wu, G., Chen, D., & Jiang, M. (2005). A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups. Chemical Physics Letters, 402, 312–317.

    Article  CAS  Google Scholar 

  • Chiang, I. W., Brinson, B. E., Smalley, R. E., Margrave, J. L., & Hauge, R. H. (2001). Purification and characterization of single-wall carbon nanotubes. The Journal of Physical Chemistry. B, 105, 1157–1161.

    Article  CAS  Google Scholar 

  • Costa, S., & Borowiak-Palen, E. (2009). Diameter sensitive effect in singlewalled carbon nanotubes upon acid treatment. Journal of Alloys and Compounds, 486, 386–390.

    Article  CAS  Google Scholar 

  • Coughlin, R. W., & Ezra, F. S. (1968). Role of surface acidity in the adsorption of organic pollutants on the surface of carbon. Environmental Science & Technology, 2, 291–297.

    Article  CAS  Google Scholar 

  • Day, P. N., Pachter, R., Gordon, M. S., & Merrill, G. N. (2000). A study of water clusters using the effective fragment potential and Monte Carlo simulated annealing. The Journal of Chemical Physics, 112, 2063–2073.

    Article  CAS  Google Scholar 

  • Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Souza Filho, A. G., & Saito, R. (2002). Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, 40, 2043–2061.

    Article  CAS  Google Scholar 

  • Fan, Z., Casey, F. X. M., Hakk, H., & Larsen, G. L. (2007). Persistence and fate of 17β-estradiol and testosterone in agricultural soils. Chemosphere, 67, 886–895.

    Article  CAS  Google Scholar 

  • Feng, Y., Zhang, Z., Gao, P., Su, H., Yu, Y., & Ren, N. (2010). Adsorption behavior of EE2 (17α-ethinylestradiol) onto the inactivated sewage sludge: Kinetics, thermodynamics and influence factors. Journal of Hazardous Materials, 175, 970–976.

    Article  CAS  Google Scholar 

  • Ferguson, P. L., Chandler, G. T., Templeton, R. C., DeMarco, A., Scrivens, W. A., & Englehart, B. A. (2008). Influence of sediment-amendment with single-walled carbon nanotubes and diesel soot on bioaccumulation of hydrophobic organic contaminants by benthic invertebrates. Environmental Science & Technology, 42, 3879–3885.

    Article  CAS  Google Scholar 

  • Forrest, S. R., & Witten, T. A., Jr. (1979). Long-range correlations in smoke-particle aggregates. Journal of Physics A: Mathematical and General, 12, L109.

    Article  CAS  Google Scholar 

  • Furtado, C. A., Kim, U. J., Gutierrez, H. R., Pan, L., Dickey, E. C., & Eklund, P. C. (2004). Debundling and dissolution of single-walled carbon nanotubes in amide solvents. Journal of the American Chemical Society, 126, 6095–6105.

    Article  CAS  Google Scholar 

  • Gonzo, E., & Gonzo, L. (2005). Kinetics of phenol removal from aqueous solution by adsorption onto peanut shell acid-activated carbon. Adsorption Science and Technology, 23, 289–302.

    Article  CAS  Google Scholar 

  • Goodson, A., Robin, H., Summerfield, W., & Cooper, I. (2004). Migration of bisphenol A from can coatings—effects of damage, storage conditions and heating. Food Additives and Contaminants, 21, 1015–1026.

    Article  CAS  Google Scholar 

  • Gordon, M.S., Schmidt, M.W., Dykstra, C.E., Frenking, G., Kim, K.S., Scuseria, G.E. (2005). Advances in electronic structure theory: GAMESS a decade later. Theory and applications of computational chemistry: the first forty years. Elsevier, p 1167–1189.

  • Gordon, M.S., Slipchenko, L., Li, H., Jensen, J.H., Spellmeyer, D.C., Wheeler, R. (2007). The effective fragment potential: a general method for predicting intermolecular interactions. Annual reports in computational chemistry. Elsevier, p 177–193.

  • Gotovac, S., Yang, C. M., Hattori, Y., Takahashi, K., Kanoh, H., & Kaneko, K. (2007). Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters. Journal of Colloid and Interface Science, 314, 18–24.

    Article  CAS  Google Scholar 

  • Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 132, 154104.

    Article  Google Scholar 

  • Grimme, S., Ehrlich, S., & Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry, 32, 1456–1465.

    Article  CAS  Google Scholar 

  • Gruneis, A., Saito, R., Kimura, T., Cançado, L. G., Pimenta, M. A., Jorio, A., Souza, A. G., Dresselhaus, G., & Dresselhaus, M. S. (2002). Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy. Physical Review B, 65, 155405.

    Article  Google Scholar 

  • Hersam, M. C. (2008). Progress towards monodisperse single-walled carbon nanotubes. National Nanotechnology, 3, 387–394.

    Article  CAS  Google Scholar 

  • Ho, Y. S., Ng, J. C. Y., & McKay, G. (2000). Kinetics of pollution sorption by biosorbents. Review in Separation and Purification Methods, 29, 189–232.

    Article  CAS  Google Scholar 

  • Hu, H., Zhao, B., Itkis, M. E., & Haddon, R. C. (2003). Nitric acid purification of single-walled carbon nanotubes. The Journal of Physical Chemistry. B, 107, 13838–13842.

    Article  CAS  Google Scholar 

  • Hu, H., Yu, A., Kim, E., Zhao, B., Itkis, M. E., Bekyarova, E., & Haddon, R. C. (2005). Influence of the zeta potential on the dispersability and purification of single-walled carbon nanotubes. The Journal of Physical Chemistry. B, 109, 11520–11524.

    Article  CAS  Google Scholar 

  • Hu, J., Chen, C. L., Zhu, X. X., & Wang, X. K. (2009). Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials, 162, 1542–1550.

    Article  CAS  Google Scholar 

  • Huang, Q., & Weber, W. J. (2005). Transformation and removal of bisphenol A from aqueous phase via peroxidase-mediated oxidative coupling reactions: efficacy, products, and pathways. Environmental Science & Technology, 39, 6029–6036.

    Article  CAS  Google Scholar 

  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.

    Article  CAS  Google Scholar 

  • Jorio, A., Saito, R., Hafner, J. H., Lieber, C. M., Hunter, M., McClure, T., Dresselhaus, G., & Dresselhaus, M. S. (2001). Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman Scattering. Physical Review Letters, 86, 1118.

    Article  CAS  Google Scholar 

  • Joseph, L., Zaib, Q., Khan, I. A., Berge, N. D., Park, Y. G., Saleh, N. B., & Yoon, Y. (2011). Removal of bisphenol A and 17a-ethinyl estradiol from landfill leachate using single-walled carbon nanotubes. Water Research, 45, 4056–4068.

    Article  CAS  Google Scholar 

  • Kastner, J., Carr, J. M., Keal, T. W., Thiel, W., Wander, A., & Sherwood, P. (2009). DL-FIND: an open-source geometry optimizer for atomistic simulations. Journal of Physical Chemistry A, 113, 11856–11865.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environmental Science & Technology, 36, 1202–1211.

    Article  CAS  Google Scholar 

  • Kukovecz, A., Pichler, T., Pfeiffer, R., Kramberger, C., & Kuzmany, H. (2003). Diameter selective doping of single wall carbon nanotubes. Physical Chemistry Chemical Physics, 5, 582–587.

    Article  CAS  Google Scholar 

  • Kuo, C. Y. (2009). Comparison with as-grown and microwave modified carbon nanotubes to removal aqueous bisphenol A. Desalination, 249, 976–982.

    Article  CAS  Google Scholar 

  • Laganà, A., Bacaloni, A., De Leva, I., Faberi, A., Fago, G., & Marino, A. (2004). Analytical methodologies for determining the occurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters. Analytica Chimica Acta, 501, 79–88.

    Article  Google Scholar 

  • Li, Y.-H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D., & Wei, B. (2002). Lead adsorption on carbon nanotubes. Chemical Physics Letters, 357, 263–266.

    Article  CAS  Google Scholar 

  • Li, Y.-H., Wang, S., Zhang, X., Wei, J., Xu, C., Luan, Z., & Wu, D. (2003). Adsorption of fluoride from water by aligned carbon nanotubes. Materials Research Bulletin, 38, 469–476.

    Article  CAS  Google Scholar 

  • Liu, G., Ma, J., Li, X., & Qin, Q. (2009). Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments. Journal of Hazardous Materials, 164, 1275–1280.

    Article  CAS  Google Scholar 

  • Lu, C. S., Chung, Y. L., & Chang, K. F. (2005). Adsorption of trihalomethanes from water with carbon nanotubes. Water Research, 39, 1183–1189.

    Article  CAS  Google Scholar 

  • Ma, J., Wang, J. N., & Wang, X. X. (2009). Large-diameter and water-dispersible single-walled carbon nanotubes: synthesis, characterization and applications. Journal of Materials Chemistry, 19, 3033–3041.

    Article  CAS  Google Scholar 

  • Mauter, M. S., & Elimelech, M. (2008). Environmental applications of carbon-based nanomaterials. Environmental Science & Technology, 42, 5843–5859.

    Article  CAS  Google Scholar 

  • Moreno-Castilla, C., Carrasco-Marín, F., & Mueden, A. (1997). The creation of acid carbon surfaces by treatment with (NH4)2S2O8. Carbon, 35, 1619–1626.

    Article  CAS  Google Scholar 

  • Niyogi, S., Hamon, M. A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M. E., & Haddon, R. C. (2002). Chemistry of single-walled carbon nanotubes. Accounts of Chemical Research, 35, 1105–1113.

    Article  CAS  Google Scholar 

  • Pan, B., & Xing, B. (2010). Competitive and complementary adsorption of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials. Journal of Agricultural and Food Chemistry, 58, 8338–8343.

    Article  CAS  Google Scholar 

  • Pan, B., Lin, D., Mashayekhi, H., & Xing, B. (2008). Adsorption and hysteresis of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials. Environmental Science & Technology, 42, 5480–5485.

    Article  CAS  Google Scholar 

  • Pan, B., Sun, K., & Xing, B. (2010). Adsorption kinetics of 17α-ethinyl estradiol and bisphenol A on carbon nanomaterials. II. Concentration-dependence. Journal of Soils and Sediments, 10, 845–854.

    Article  Google Scholar 

  • Plata, D. L., Gschwend, P. M., & Reddy, C. M. (2008). Industrially synthesized single-walled carbon nanotubes: compositional data for users, environmental risk assessments, and source apportionment. Nanotechnology, 19, 185706.

    Article  CAS  Google Scholar 

  • Pyrzynska, K., Stafiej, A., & Biesaga, M. (2007). Sorption behavior of acidic herbicides on carbon nanotubes. Mikrochimica Acta, 159, 293–298.

    Article  CAS  Google Scholar 

  • Saleh, N. B., Pfefferle, L. D., & Elimelech, M. (2008). Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: Measurements and environmental implications. Environmental Science & Technology, 42, 7963–7969.

    Article  CAS  Google Scholar 

  • Saleh, N. B., Pfefferle, L. D., & Elimelech, M. (2010). Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environmental Science & Technology, 44, 2412–2418.

    Article  CAS  Google Scholar 

  • Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., & Su, S. (1993). General atomic and molecular electronic structure system. Journal of Computational Chemistry, 14, 1347–1363.

    Article  CAS  Google Scholar 

  • Smith, T., Slipchenko, L. V., & Gordon, M. S. (2008). Modeling pi–pi interactions with the effective fragment potential method: the benzene dimer and substituents. Journal of Physical Chemistry A, 112, 5286–5294.

    Article  CAS  Google Scholar 

  • Snyder, S. A., Westerhoff, P., Yoon, Y., & Sedlak, D. L. (2003). Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environmental Engineering Science, 20, 449–469.

    Article  CAS  Google Scholar 

  • Souza Filho, A. G., Jorio, A., Samsonidze, G. G., Dresselhaus, G., Pimenta, M. A., Dresselhaus, M. S., Swan, A. K., & Uuml, S. M. (2003). Competing spring constant versus double resonance effects on the properties of dispersive modes in isolated single-wall carbon nanotubes. Physical Review B, 67, 035427.

    Article  Google Scholar 

  • Stepanian, S. G., Karachevtsev, M. V., Glamazda, V. A., & Adamowicz, L. (2009). Raman spectroscopy study and first-principles calculations of the interaction between nucleic acid bases and carbon nanotubes. Journal of Physical Chemistry A, 113, 3621–3629.

    Google Scholar 

  • Su, F. S., & Lu, C. S. (2007). Adsorption kinetics, thermodynamics and desorption of natural dissolved organic matter by multiwalled carbon nanotubes. Journal of Environmental Science and Health, 42, 1543–1552.

    Article  CAS  Google Scholar 

  • Tournus, F., & Charlier, J. C. (2005). Ab initio study of benzene adsorption on carbon nanotubes. Physical Review B, 71, 165421.

    Article  Google Scholar 

  • Ufimtsev, I. S., & Martinez, T. J. (2009). Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. Journal of Chemical Theory and Computation, 5, 2619–2628.

    Article  CAS  Google Scholar 

  • Upadhyayula, V. K. K., Deng, S. G., Smith, G. B., & Mitchell, M. C. (2009). Adsorption of Bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and NanoCeram (TM). Water Research, 43, 148–156.

    Article  CAS  Google Scholar 

  • Wang, F., Yao, J., Sun, K., & Xing, B. (2010). Adsorption of dialkyl phthalate esters on carbon nanotubes. Environmental Science & Technology, 44, 6985–6991.

    Article  CAS  Google Scholar 

  • Yang, K., & Xing, B. (2007). Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environmental Pollution, 145, 529–537.

    Article  CAS  Google Scholar 

  • Yang, K., Zhu, L., & Xing, B. (2006). Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environmental Science & Technology, 40, 1855–1861.

    Article  CAS  Google Scholar 

  • Yoon, Y. M., Westerhoff, P., Snyder, S. A., & Esparza, M. (2003). HPLC-fluorescence detection and adsorption of bisphenol A, 17 beta-estradiol, and 17 alpha-ethynyl estradiol on powdered activated carbon. Water Research, 37, 3530–3537.

    Article  CAS  Google Scholar 

  • Yoon, Y., Ryu, J., Oh, J., Choi, B.-G., & Snyder, S. A. (2010). Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Science of the Total Environment, 408, 636–643.

    Article  CAS  Google Scholar 

  • Yu, A., Su, C.-C. L., Roes, I., Fan, B., & Haddon, R. C. (2009). Gram-scale preparation of surfactant-free, carboxylic acid groups functionalized, individual single-walled carbon nanotubes in aqueous solution. Langmuir, 26, 1221–1225.

    Article  Google Scholar 

  • Zhang, J., Zou, H., Qing, Q., Yang, Y., Li, Q., Liu, Z., Guo, X., & Du, Z. (2003). Effect of chemical oxidation on the structure of single-walled carbon nanotubes. The Journal of Physical Chemistry. B, 107, 3712–3718.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by GS E&C and the Korea Ministry of Environment, “Project, 414-111-004.” The authors also acknowledge the University of South Carolina’s High Performance Computing Group for the computing time used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeomin Yoon.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

(a) Schematic of diagram of the dialysis system for functionalization of SWNTs and (b) rapid loss of excess acidified water from inside the dialysis membrane resulting in stable suspension of functionalized SWNTs and deposition of unwanted impurities. (DOC 162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaib, Q., Khan, I.A., Saleh, N.B. et al. Removal of Bisphenol A and 17β-Estradiol by Single-Walled Carbon Nanotubes in Aqueous Solution: Adsorption and Molecular Modeling. Water Air Soil Pollut 223, 3281–3293 (2012). https://doi.org/10.1007/s11270-012-1109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1109-5

Keywords

Navigation