Skip to main content

Seasonal Monitoring of Hydrocarbon Degraders in Alabama Marine Ecosystems Following the Deepwater Horizon Oil Spill

Abstract

Following the Deepwater Horizon explosion and crude oil contamination of a marsh ecosystem in AL in June 2010, hydrocarbon-degrader microbial abundances of aerobic alkane, total hydrocarbon, and polycyclic aromatic hydrocarbon (PAH) degraders were enumerated seasonally. Surface sediment samples were collected in October and December of 2010 and in April and July of 2011 along 40–70-m transects from the high tide to the intertidal zone including Spartina alterniflora-vegetated marsh, seagrass (Ruppia maritima)-dominated sediments, and nonvegetated sediments. Alkane and total hydrocarbon degraders in the sediment were detected, while PAH degraders were below detection limit at all locations examined during the sampling periods. The highest counts for microbial alkane degraders were observed at the high tide line in April and averaged to 8.65 × 105 of cells/g dry weight (dw) sediment. The abundance of alkane degraders during other months ranged from 9.49 × 103 to 3.87 × 104, while for total hydrocarbon degraders, it ranged between 5.62 × 103 and 1.14 × 105 of cells/g dw sediment. Pore water nutrient concentrations (NH +4 , NO 3 , NO 2 , and PO 3−4 ) showed seasonal changes with minimum values observed in December and April and maximum values in October and July. Concentrations of total petroleum hydrocarbons in sediments averaged 100.4 ± 52.4 and 141.9 ± 57.5 mg/kg in January and July, 2011, respectively. The presence of aerobic microbial communities during all seasons in these nearshore ecosystems suggests that an active and resident microbial community is capable of mineralizing a fraction of petroleum hydrocarbons.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Alexander, M. (1999). Biodegradation and bioremediation (2nd ed.). San Diego: Academic.

    Google Scholar 

  • Atlas, R. M. (1995a). Bioremediation of petroleum pollutants. International Biodeterioration & Biodegradation, 35(1–3), 317–327.

    Article  CAS  Google Scholar 

  • Atlas, R. M. (1995b). Petroleum biodegradation and oil spill bioremediation. Marine Pollution Bulletin, 31(4–12), 178–182.

    Article  CAS  Google Scholar 

  • Atlas, R. M., & Bartha, R. (1998). Microbial interactions with xenobiotic and inorganic pollutants. Microbial Ecology Fundamentals and Applications (4th ed.). Menlo Park: Benjamin/Cummings Science Publishing.

    Google Scholar 

  • Azwell, T., Blum, M. J., Hare, A., Joye, S., Kubendran, S., Laleian, A., et al. (2011). The Macondo blowout environmental report. Deepwater Horizon Study Group (pp. 1-9). Berkley, CA.

  • Boufadel, M. C., Reeser, P., Suidan, M. T., Wrenn, B. A., Cheng, J., Du, X., et al. (1999). Optimal nitrate concentration for the biodegradation of n-heptadecane in a variably-saturated sand column. Environmental Technology, 20, 191–199.

    Article  CAS  Google Scholar 

  • Braddock, J. F., Ruth, M. L., Catterall, P. H., Walworth, J. L., & McCarthy, K. A. (1997). Enhancement and inhibition of microbial activity in hydrocarbon-contaminated Arctic soils: implications for nutrient-amended bioremediation. Environmental Science & Technology, 31(7), 2078–2084.

    Article  CAS  Google Scholar 

  • Brown, E. J., & Braddock, J. F. (1990). Sheen screen, a miniaturized most-probable-number method for enumeration of oil-degrading microorganisms. Applied and Environmental Microbiology, 56(12), 3895–3896.

    CAS  Google Scholar 

  • Burke, D. J., Hamerlynck, E. P., & Hahn, D. (2003). Interactions between the salt marsh grass Spartina patens, arbuscular mycorrhizal fungi and sediment bacteria during the growing season. Soil Biology & Biochemistry, 35, 501–511.

    Article  CAS  Google Scholar 

  • Crone, T. J., & Tolstoy, M. (2010). Magnitude of the 2010 Gulf of Mexico oil leak. Science, 330(6004), 634–634.

    Article  CAS  Google Scholar 

  • Daane, L. L., Harjono, I., Zylstra, G. J., & Haggblom, M. M. (2001). Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Applied and Environmental Microbiology, 67(6), 2683–2691.

    Article  CAS  Google Scholar 

  • de Man, J. C. (1983). MPN tables, corrected. European Journal of Applied Microbiology and Biotechnology, 17, 301–305.

    Article  Google Scholar 

  • DeFlaun, M., & Mayer, L. (1983). Relationships between bacteria and grain surfaces in intertidal sediments. American Society of Limnology and Oceanography, 28(5), 873–881.

    Article  Google Scholar 

  • Elmendorf, D. L., Haith, C. E., Douglas, G. S., & Prince, R. C. (1994). Relative rates of biodegradation of substituted polycyclic aromatic hydrocarbons. In R. E. Hinchee, A. Leeson, L. Semprini, & S. K. Ong (Eds.), Bioremediation of chlorinated and polycyclic aromatic hydrocarbon compounds. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Enock, J. (2002). Intrinsic biodegradation potential of crude oil in salt marshes. Louisiana State University and Agricultural and Mechanical College

  • Haines, J. R., Wrenn, B. A., Holder, E. L., Strohmeier, K. L., Herrington, R. T., & Venosa, A. D. (1996). Measurement of hydrocarbon-degrading microbial populations by a 96-well plate most-probable-number procedure. Journal of Industrial Microbiology and Biotechnology, 16(1), 36–41.

    CAS  Google Scholar 

  • Hazen, T. C., Dubinsky, E. A., DeSantis, T. Z., Andersen, G. L., Piceno, Y. M., Singh, N., et al. (2010). Deep-see oil plume enriches indigenous oil-degrading bacteria. Science, 330(6001), 204–208.

    Article  CAS  Google Scholar 

  • Hood, M. A., Bishop, W. S., Meyers, S. P., & Whelan, T., III. (1975). Microbial indicators of oil-rich salt marsh sediments. Applied Microbiology, 30(6), 982–987.

    CAS  Google Scholar 

  • Horel, A., & Schiewer, S. (2009). Investigation of the physical and chemical parameters affecting biodegradation of diesel and synthetic diesel fuel contaminating Alaskan soils. Cold Regions Science and Technology, 58(3), 113–119.

    Article  Google Scholar 

  • Horel, A., & Schiewer, S. (2011). Influence of constant and fluctuating temperature on biodegradation rates of fish biodiesel blends contaminating Alaskan sand. Chemosphere, 83(5), 652–660.

    Article  CAS  Google Scholar 

  • Jackson, A. W., & Pardue, J. H. (1998). Potential for enhancement of biodegradation of crude oil in Louisiana salt marshes using nutrient amendments. Water, Air, and Soil Pollution, 104(1–4), 343–355.

    Google Scholar 

  • Kostka, J. E., Prakash, O., Overholt, W. A., Green, J. S., Freyer, G., Canion, A., et al. (2011). Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill. Applied and Environmental Microbiology, 77(22), 7962–7974.

    Article  CAS  Google Scholar 

  • LaRiviere, D. J., Autenrieth, R. L., & Bonner, J. S. (2003). Redox dynamics during recovery of an oil-impacted estuarine wetland. Water Research, 37, 3307–3318.

    Article  CAS  Google Scholar 

  • Launen, L. A., Dutta, J., Turpeinen, R., Eastep, M. E., Dorn, R., Buggs, V. H., et al. (2008). Characterization of the indigenous PAH-degrading bacteria of Spartina dominated salt marshes in the New York/New Jersey Harbor. Biodegradation, 19, 347–363.

    Article  CAS  Google Scholar 

  • Leahy, J. G., & Colwell, R. R. (1990). Microbial-degradation of hydrocarbons in the environment. Microbiological Reviews, 54(3), 305–315.

    CAS  Google Scholar 

  • Lin, Q., & Mendelssohn, I. A. (1998). The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecological Engineering, 10, 263–274.

    Article  Google Scholar 

  • MacDonald, I. R., Leifer, I., Sassen, R., Stine, P., Mitchell, R., & Guinasso, N., Jr. (2002). Transfer of hydrocarbons from natural seeps to the water column and atmosphere. Geofluids, 2, 95–107.

    Article  CAS  Google Scholar 

  • Maier, R. M., & Pepper, I. L. (2009). Earth environments. In R. M. Maier, I. L. Pepper, & C. P. Gerba (Eds.), Environmental microbiology (2nd ed., pp. 57–82). Burlington: Elsevier.

    Chapter  Google Scholar 

  • Mearns, A. J., Venosa, A. D., Lee, K., & Salazar, M. (1997). Field-testing bioremediation treating agents: lessons from an experimental shoreline oil spill. Paper presented at the International Oil Spill Conference, Fort Lauderdale, Florida.

  • Mills, M. A., Bonner, J. S., McDonald, T. J., Page, C. A., & Autenrieth, R. L. (2003). Intrinsic bioremediation of petroleum-impacted wetland. Marine Pollution Bulletin, 46, 887–899.

    Article  CAS  Google Scholar 

  • Morris, J. T. (2006). Competition among marsh macrophytes by means of geomorphological displacement in the intertidal zone. Estuarine and Coastal Shelf Science, 69, 395–402.

    Article  Google Scholar 

  • Phillips, L. A. (2008). The relationship between plants and their root-associated microbial communities in hydrocarbon phytoremediation. Dissertation, University of Saskatchewan, Saskatoon.

  • Porter, K. G., & Feig, Y. S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography, 25(5), 943–948.

    Article  Google Scholar 

  • Saadoun, I. M. K., & Al-Ghzawi, Z. D. (2005). Bioremediation of petroleum contamination (Bioremediation of Aquatic and Terrestial Ecosystems): Science Publishers Inc.

  • Stephens, D. B. (2000). Vadoze zone hydrology. Boca Raton: CRC Press, Inc.

    Google Scholar 

  • Stout, J. (1984). The ecology of irregularly flooded salt marshes of the northeastern Gulf of Mexico: a community profile (U. S. D. o. t. Interior, Trans.). Biological Report (Vol. 85, pp. 1-115): Fish and Wildife Service

  • Walworth, J., & Ferguson, S. (2008). Nutrient requirements for bioremediation. In D. Filler, I. Snape, & D. L. Barnes (Eds.), Bioremediation of petroleum hydrocarbons in cold regions: Cambridge University Press.

  • Wrenn, B. A., & Venosa, A. D. (1996). Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure. Canadian Journal of Microbiology, 42(3), 252–258.

    Article  CAS  Google Scholar 

  • Wright, A. L., Weaver, R. W., & Webb, J. W. (1996). Oil bioremediation in salt marsh mesocosms as infuenced by N and P fertilization, flooding, and season. Water, Air, and Soil Pollution, 95(1–4), 179–191.

    Google Scholar 

  • Zhu, X., Venosa, A. D., Suidan, M. T., & Lee, K. (2004). Guidelines for the bioremediation of oil-contaminated salt marshes (pp. 1–66). Cincinnati: Environmental Protection Agency.

    Google Scholar 

Download references

Acknowledgments

This material is based upon the work supported by the National Science Foundation-CBET under grant no. RAPID 1042743, Mississippi State University/Northern Gulf Institute 191001-306911_01/TO 091, and Dauphin Island Sea Lab/Marine Environmental Science Consortium 2423 Jv, T4-005UA. The authors thank A. Ortmann and B. Christiaen for instrument use and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agota Horel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm. 1

(PDF 120 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Horel, A., Mortazavi, B. & Sobecky, P.A. Seasonal Monitoring of Hydrocarbon Degraders in Alabama Marine Ecosystems Following the Deepwater Horizon Oil Spill. Water Air Soil Pollut 223, 3145–3154 (2012). https://doi.org/10.1007/s11270-012-1097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1097-5

Keywords

  • Deepwater Horizon
  • Crude oil
  • Hydrocarbon degraders
  • Macondo well
  • Biodegradation
  • Salt marsh