Skip to main content

Advertisement

Log in

Influence of Land Use and Nutrient Flux on Metabolic Activity of E. coli O157 in River Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Infections caused by waterborne Escherichia coli O157 continue to pose a public health risk. An increase in faecal coliform loading of watercourses due to expanding populations, intensification of agriculture and climate change are predicted to amplify these risks. Understanding the effect of land use on the ecology of E. coli O157 in environmental waters is therefore important for implementing effective mitigation measures. In order to test the hypothesis that activity of waterborne E. coli O157 is affected by both land use type and the respective autochthonous microbial communities, we inoculated replicate microcosms of water collected from areas of contrasting land uses within a catchment with a chromosomally lux-marked E. coli O157. Pathogen metabolic activity and its ability to reactivate following addition of nutrients were quantified over time in both filter-sterilised and non-sterile microcosms. Metabolic activity differed significantly according to the land use type, the degree of competition from background microbes and the availability of nutrients. These results indicate that land use types associated with particular areas of a watercourse should be considered a central factor in models that aim to predict pathogen risk in environmental waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allan, D. J. (2004). Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35, 257–284.

    Article  Google Scholar 

  • Avery, L. M., Williams, A. P., Killham, K., & Jones, D. L. (2008). Survival of Escherichia coli O157:H7 in waters from lakes, rivers, puddles and animal drinking troughs. Science of the Total Environment, 389, 378–385.

    Article  CAS  Google Scholar 

  • CEH. (2011). Conwy Catchment Observatory, Centre for Ecology and Hydrology. http://www.ceh.ac.uk/sci_programmes/Conwy.html. Accessed 10 Oct 2011.

  • Crowther, J., Wyer, M. D., Bradford, M., Kay, D., Francis, C. A., & Knisel, W. G. (2003). Modelling faecal indicator concentrations in large rural catchments using land use and topographic data. Journal of Applied Microbiology, 94, 962–973.

    Article  CAS  Google Scholar 

  • Hale, T. L., & Bonventre, P. F. (1979). Shigella infection of Henle intestinal epithelial cells: Role of the bacterium. Infection and Immunity, 24, 879–886.

    CAS  Google Scholar 

  • Hampson, D., Crowther, J., Bateman, I., Kay, D., Posen, P., Stapleton, C., et al. (2010). Predicting microbial pollution concentrations in UK rivers in response to land use change. Water Research, 44, 4748–4759. Special Issue: SI.

    Article  CAS  Google Scholar 

  • He, L. M. L., & He, Z. L. (2008). Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA. Water Research, 42, 2563–2573.

    Article  CAS  Google Scholar 

  • Jones, D. L. (1999). Potential health risks associated with the persistence of Escherichia coli O157 in agricultural environments. Soil Use and Management, 15, 76–83.

    Article  Google Scholar 

  • Jones, P. D., & Reid, P. A. (2001). Assessing future changes in extreme precipitation over Britain using regional climate model integrations. International Journal of Climatology, 21, 1337–1356.

    Article  Google Scholar 

  • Kay, D., Crowther, J., Stapleton, C. M., Wyer, M. D., Fewtrell, L., Anthony, C., et al. (2008). Faecal indicator organism concentrations and catchment export coefficients in the UK. Water Research, 42, 2649–2661.

    Article  CAS  Google Scholar 

  • Kay, D., Anthony, S., Crowther, J., Chambers, B. J., Nicholson, F. A., Chadwick, D., et al. (2009). Microbial water pollution: A screening tool for initial catchment-scale assessment & source apportionment. Science of the Total Environment, 408, 5649–5656.

    Article  Google Scholar 

  • Kistemann, T., Claßen, T., Koch, C., Dagendorf, F., Fischeder, R., Gebel, J., et al. (2002). Microbial load of drinking water reservoir tributaries during extreme rainfall and runoff. Applied and Environmental Microbiology, 68, 2188–2197.

    Article  CAS  Google Scholar 

  • Klein, D. A., & Casida, L. E., Jr. (1967). Escherichia coli die-out from normal soil as related to nutrient availability and the indigenous microflora. Canadian Journal of Microbiology, 13, 1461–1470.

    Article  CAS  Google Scholar 

  • Ledger, D. C. (1981). The velocity of the River Tweed and its tributaries. Freshwater Biology, 11, 1–10.

    Article  Google Scholar 

  • Oliver, D. M., Heathwaite, A. L., Fish, R. D., Chadwick, D. R., Hodgson, C. J., Winter, M., et al. (2009). Scale appropriate modelling of diffuse microbial pollution from agriculture. Progress in Physical Geography, 33, 358–377.

    Article  Google Scholar 

  • Pickup, R. W., Rhodes, G., & Hermon-Taylor, J. (2003). Monitoring bacterial pathogens in the environment. Current Opinion in Biotechnology, 14, 319–325.

    Article  CAS  Google Scholar 

  • Quilliam, R. S., Williams, A. P., Avery, L. M., Malham, S. K., & Jones, D. L. (2011a). Unearthing human pathogens at the agricultural-environment interface: A review of current methods for the detection of Escherichia coli O157 in freshwater ecosystems. Agriculture, Ecosystems & Environment, 140, 354–360.

    Article  Google Scholar 

  • Quilliam, R. S., Clements, K., Duce, C., Cottrill, S. B., Malham, S. K., & Jones, D. L. (2011b). Spatial variation of waterborne Escherichia coli—implications for routine sampling of water quality. Journal of Water and Health, 9, 734–737.

    Google Scholar 

  • Ritchie, J. M., Campbell, J., Shepherd, J., Beaton, Y., Jones, D., Killham, K., et al. (2003). A stable bioluminescent construct of Escherichia coli O157:H7 for hazard assessments of long-term survival in the environment. Applied and Environmental Microbiology, 69, 3359–3367.

    Article  CAS  Google Scholar 

  • Shanahan, P., Borchardt, D., Henze, M., Rauch, W., Reichert, P., Somlyódy, L., et al. (2001). River water quality model: I. Modelling approach. Water Science and Technology, 43, 1–9.

    CAS  Google Scholar 

  • Strachan, N. J. C., Dunn, G. M., Locking, M. E., Reid, T. M. S., & Ogden, I. D. (2006). Escherichia coli O157: Burger bug or environmental pathogen? International Journal of Food Microbiology, 112, 129–137.

    Article  Google Scholar 

  • Thorn, C. E., Quilliam, R. S., Williams, A. P., Malham, S. K., Cooper, D., Reynolds, B., et al. (2011). Grazing intensity is a poor indicator of waterborne Escherichia coli O157 activity. Anaerobe, 17, 330–333.

    Article  CAS  Google Scholar 

  • Williams, A. P., Avery, L. M., Killham, K., & Jones, D. L. (2007). Persistence, dissipation, and activity of Escherichia coli O157:H7 within sand and seawater environments. FEMS Microbiology Ecology, 60, 24–32.

    Article  CAS  Google Scholar 

  • Williams, A. P., McGregor, K. A., Killham, K., & Jones, D. L. (2008). Persistence and metabolic activity of Escherichia coli O157:H7 in farm animal faeces. FEMS Microbiology Letters, 287, 168–173.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was jointly funded by the Knowledge Economy Skills Scholarship programme and the Rural Economy & Land Use programme (RES-229-25-0012). We also thank David Norris for assistance with graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, A.P., Quilliam, R.S., Thorn, C.E. et al. Influence of Land Use and Nutrient Flux on Metabolic Activity of E. coli O157 in River Water. Water Air Soil Pollut 223, 3077–3083 (2012). https://doi.org/10.1007/s11270-012-1090-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1090-z

Keywords

Navigation