Water, Air, & Soil Pollution

, Volume 223, Issue 6, pp 3009–3020 | Cite as

Photocatalytic Degradation of Herbicide Quinmerac in Various Types of Natural Water

  • Vesna N. Despotović
  • Biljana F. Abramović
  • Daniela V. Šojić
  • Sanja J. Kler
  • Milena B. Dalmacija
  • Luka J. Bjelica
  • Dejan Z. Orčić


The efficiency of the photocatalytic degradation of the herbicide quinmerac in aqueous TiO2 suspensions was examined as a function of the type of light source, TiO2 loading, pH, temperature, electron acceptors, and hydroxyl radical (OH) scavenger. The optimum loading of catalyst was found to be 0.25 mg mL−1 under UV light at pH 7.2, with the apparent activation energy of the reaction being 13.7 kJ mol−1. In the first stage of the reaction, the photocatalytic degradation of quinmerac (50 μM) followed approximately a pseudo-first order kinetics. The most efficient electron acceptor appeared to be H2O2 along with molecular oxygen. By studying the effect of ethanol as an OH scavenger, it was shown that the heterogeneous catalysis takes place mainly via OH. The results also showed that the disappearance of quinmerac led to the formation of a number of organic intermediates and ionic byproducts, whereas its complete mineralization occurred in about 120 min. The reaction intermediates (7-chloro-3-methylquinoline-5,8-dione, three isomeric phenols hydroxy-7-chloro-3-methylquinoline-8-carboxylic acids, and 7-chloro-3-(hydroxymethyl)quinoline-8-carboxylic acid) were identified and the kinetics of their appearance/disappearance was followed by LC–ESI–MS/MS. Tentative photodegradation pathways were proposed and discussed. The study also encompassed the effect of quality of natural water on the rate of removal of quinmerac.


Quinmerac Herbicide Photocatalytic degradation Titanium dioxide Photocatalytic degradation pathways Natural water 



This document has been produced with the financial assistance of the European Union (Project HU-SRB/0901/121/116 OCEEFPTRWR Optimization of Cost Effective and Environmentally Friendly Procedures for Treatment of Regional Water Resources). The contents of this document are the sole responsibility of the University of Novi Sad, Faculty of Sciences and can under no circumstances be regarded as reflecting the position of the European Union and/or the Managing Authority.


  1. Abramović, B. F., Anderluh, V. B., Topalov, A. S., & Gaál, F. F. (2004). Titanium dioxide mediated photocatalytic degradation of 3-amino-2-chloropyridine. Applied Catalysis B: Environmental, 48(3), 213–221.CrossRefGoogle Scholar
  2. Abramović, B., Šojić, D., Despotović, V., Vione, D., Pazzi, M., & Csanádi, J. (2011). A comparative study of the activity of TiO2 Wackherr and Degussa P25 in the photocatalytic degradation of picloram. Applied Catalysis B: Environmental, 105(1–2), 191–198.CrossRefGoogle Scholar
  3. Basfar, A. A., Khan, H. M., Al-Shahrani, A. A., & Cooper, W. J. (2005). Radiation induced decomposition of methyl tert-butyl ether in water in presence of chloroform: Kinetic modelling. Water Research, 39(10), 2085–2095.CrossRefGoogle Scholar
  4. Burrows, H. D., Canle, L. M., Santaballa, J. A., & Steenken, S. (2002). Reaction pathways and mechanisms of photodegradation of pesticides. Journal of Photochemistry and Photobiology B: Biology, 67(2), 71–108.CrossRefGoogle Scholar
  5. Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. Journal of Physical and Chemical Reference Data, 17(2), 513–886.CrossRefGoogle Scholar
  6. Chen, S., & Liu, Y. (2007). Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst. Chemosphere, 67(5), 1010–1017.CrossRefGoogle Scholar
  7. Chu, W., & Wong, C. C. (2004). The photocatalytic degradation of dicamba in TiO2 suspensions with the help of hydrogen peroxide by different near UV irradiations. Water Research, 38(4), 1037–1043.CrossRefGoogle Scholar
  8. Chu, W., Choy, W. K., & So, T. Y. (2007). The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline. Journal of Hazardous Materials, 141(1), 86–91.CrossRefGoogle Scholar
  9. Chu, W., Gao, N., Li, C., & Cui, J. (2009). Photochemical degradation of typical halogenated herbicide 2,4-D in drinking water with UV/H2O2/micro-aeration. Science in China. Series B: Chemistry, 52(12), 2351–2357.CrossRefGoogle Scholar
  10. Daneshvar, N., Salari, D., & Khataee, A. R. (2004). Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 162(2–3), 317–322.CrossRefGoogle Scholar
  11. Duan, X., Li, X., Wang, A., Teng, Y., Wang, Y., & Hu, Y. (2010). Effect of TiO2 on hydrodenitrogenation performances of MCM-41 supported molybdenum phosphides. Catalysis Today, 149(1–2), 11–18.CrossRefGoogle Scholar
  12. Franzén, M., Gustafsson, K., Hallqvist, H., Niemi, L., Wallander, J., Thorin, C., & Örn, P. (2007). The impact of herbicide tolerant crops on some environmental quality objectives. <http://www2.jordbruksverket.se/webdav/files/SJV/trycksaker/Pdf_rapporter/ra07_21gb.pdf. Accessed 30 May 11.
  13. Grossmann, K., & Scheltrup, F. (1998). Studies on the mechanism of selectivity of the auxin herbicide quinmerac. Pesticide Science, 52(2), 111–118.CrossRefGoogle Scholar
  14. Haque, M. M., & Muneer, M. (2007). Photodegradation of norfloxacin in aqueous suspensions of titanium dioxide. Journal of Hazardous Materials, 145(1–2), 51–57.CrossRefGoogle Scholar
  15. Konstantinou, I. K., & Albanis, T. A. (2003). Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: Intermediates and degradation pathways. Applied Catalysis B: Environmental, 42(4), 319–335.CrossRefGoogle Scholar
  16. Lair, A., Ferronato, C., Chovelon, J. M., & Herrmann, J. M. (2008). Naphthalene degradation in water by heterogeneous photocatalysis: An investigation of the influence of inorganic anions. Journal of Photochemistry and Photobiology A: Chemistry, 193(2–3), 193–203.CrossRefGoogle Scholar
  17. Muneer, M., & Bahnemann, D. (2002). Semiconductor-mediated photocatalyzed degradation of two selected pesticide derivates, terbacil and 2,4,5-tribromoimidazole, in aqueous suspension. Applied Catalysis B: Environmental, 36(2), 95–111.CrossRefGoogle Scholar
  18. Muruganandham, M., & Swaminathan, M. (2006). Photocatalytic decolourisation and degradation of reactive orange 4 by TiO2-UV process. Dyes and Pigment, 68(2–3), 133–142.CrossRefGoogle Scholar
  19. Navío, J. A., Macias, M., Garcia-Gómez, M., & Pradera, M. A. (2008). Functionalisation versus mineralization of some N-heterocyclic compounds upon UV-illumination in the presence of un-doped and iron-doped TiO2 photocatalysts. Applied Catalysis B: Environmental, 82(3–4), 225–232.CrossRefGoogle Scholar
  20. Ogunsola, O. M. (2000). Decomposition of isoquinoline and quinoline by supercritical water. Journal of Hazardous Materials, B74(3), 187–195.CrossRefGoogle Scholar
  21. Prados-Joya, G., Sánchez-Polo, M., Rivera-Utrilla, J., & Ferro-garcìa, M. (2011). Photodegradation of the antibiotics nitroimidazoles in aqueous solution by ultraviolet radiation. Water Research, 45(1), 393–403.CrossRefGoogle Scholar
  22. Qamar, M., Muneer, M., & Bahnemann, D. (2006). Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspension of titanium dioxide. Journal of Environmental Management, 80(2), 99–106.CrossRefGoogle Scholar
  23. San, N., Hatipoğlu, A., Koçtürk, G., & Çınar, Z. (2001). Prediction of primary intermediates and the photodegradation kinetics of 3-aminophenol in aqueous TiO2 suspension. Journal of Photochemistry and Photobiology A: Chemistry, 139(2–3), 225–232.CrossRefGoogle Scholar
  24. Soboleva, N. M., Nosovich, A. A., & Goncharuk, V. V. (2007). The heterogenic photocatalysis in water treatment processes. Journal of Water Chemistry and Technology, 29(2), 72–89.CrossRefGoogle Scholar
  25. Šojić, D. V., Anderluh, V. B., Orčić, D. Z., & Abramović, B. F. (2009). Photodegradation of clopyralid in TiO2 suspensions: Identification of intermediates and reaction pathways. Journal of Hazardous Materials, 168(1), 94–101.CrossRefGoogle Scholar
  26. Šojić, D., Despotović, V., Abramović, B., Todorova, N., Giannakopoulou, T., & Trapalis, C. (2010a). Photocatalytic degradation of mecoprop and clopyralid in aqueous suspensions of nanostructured N-doped TiO2. Molecules, 15(5), 2994–3009.CrossRefGoogle Scholar
  27. Šojić, D. V., Despotović, V. N., Abazović, N. D., Čomor, M. I., & Abramović, B. F. (2010b). Photocatalytic degradation of selected herbicides in aqueous suspensions of doped titania under visible light irradiation. Journal of Hazardous Materials, 179(1–3), 49–56.Google Scholar
  28. Tomlin, C. D. S. (Ed.). (2009). The pesticide manual (15th ed., pp. 1006–1007). Hampshire: Crop Protection Publications.Google Scholar
  29. Vasudevan, D., Cooper, E. M., & Van Exem, O. L. (2002). Sorption–desorption of ionogenic compounds at the mineral-water interface: Study of metal oxide-rich soils and pure-phase minerals. Environmental Science and Technology, 36(3), 501–511.CrossRefGoogle Scholar
  30. Vione, D., Khanra, S., Cucu Man, S., Maddigapu, P. R., Das, R., Arsene, C., Olariu, R. J., Maurino, V., & Minero, M. (2009). Inhibition vs. enhancement of the nitrate-induced phototransformation of organic substrates by the OH scavengers bicarbonate and carbonate. Water Research, 43(18), 4718–4728.CrossRefGoogle Scholar
  31. Wang, K. H., Hsieh, Y. H., Chou, M. Y., & Chang, C. Yu. (1999). Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution. Applied Catalysis B: Environmental, 21(1), 1–8.CrossRefGoogle Scholar
  32. Zhang, W. B., An, T. C., Xiao, X. M., Fu, J. M., Sheng, G. Y., & Cui, M. C. (2003). Photochemical degradation performance of quinoline aqueous solution in presence of hydrogen peroxide. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, A38(11), 2599–2611.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Vesna N. Despotović
    • 1
  • Biljana F. Abramović
    • 1
  • Daniela V. Šojić
    • 1
  • Sanja J. Kler
    • 1
  • Milena B. Dalmacija
    • 1
  • Luka J. Bjelica
    • 1
  • Dejan Z. Orčić
    • 1
  1. 1.Department of Chemistry, Biochemistry and Environmental ProtectionFaculty of SciencesNovi SadSerbia

Personalised recommendations