Skip to main content
Log in

Photocatalytic Degradation of Herbicide Quinmerac in Various Types of Natural Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The efficiency of the photocatalytic degradation of the herbicide quinmerac in aqueous TiO2 suspensions was examined as a function of the type of light source, TiO2 loading, pH, temperature, electron acceptors, and hydroxyl radical (OH) scavenger. The optimum loading of catalyst was found to be 0.25 mg mL−1 under UV light at pH 7.2, with the apparent activation energy of the reaction being 13.7 kJ mol−1. In the first stage of the reaction, the photocatalytic degradation of quinmerac (50 μM) followed approximately a pseudo-first order kinetics. The most efficient electron acceptor appeared to be H2O2 along with molecular oxygen. By studying the effect of ethanol as an OH scavenger, it was shown that the heterogeneous catalysis takes place mainly via OH. The results also showed that the disappearance of quinmerac led to the formation of a number of organic intermediates and ionic byproducts, whereas its complete mineralization occurred in about 120 min. The reaction intermediates (7-chloro-3-methylquinoline-5,8-dione, three isomeric phenols hydroxy-7-chloro-3-methylquinoline-8-carboxylic acids, and 7-chloro-3-(hydroxymethyl)quinoline-8-carboxylic acid) were identified and the kinetics of their appearance/disappearance was followed by LC–ESI–MS/MS. Tentative photodegradation pathways were proposed and discussed. The study also encompassed the effect of quality of natural water on the rate of removal of quinmerac.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramović, B. F., Anderluh, V. B., Topalov, A. S., & Gaál, F. F. (2004). Titanium dioxide mediated photocatalytic degradation of 3-amino-2-chloropyridine. Applied Catalysis B: Environmental, 48(3), 213–221.

    Article  Google Scholar 

  • Abramović, B., Šojić, D., Despotović, V., Vione, D., Pazzi, M., & Csanádi, J. (2011). A comparative study of the activity of TiO2 Wackherr and Degussa P25 in the photocatalytic degradation of picloram. Applied Catalysis B: Environmental, 105(1–2), 191–198.

    Article  Google Scholar 

  • Basfar, A. A., Khan, H. M., Al-Shahrani, A. A., & Cooper, W. J. (2005). Radiation induced decomposition of methyl tert-butyl ether in water in presence of chloroform: Kinetic modelling. Water Research, 39(10), 2085–2095.

    Article  CAS  Google Scholar 

  • Burrows, H. D., Canle, L. M., Santaballa, J. A., & Steenken, S. (2002). Reaction pathways and mechanisms of photodegradation of pesticides. Journal of Photochemistry and Photobiology B: Biology, 67(2), 71–108.

    Article  CAS  Google Scholar 

  • Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. Journal of Physical and Chemical Reference Data, 17(2), 513–886.

    Article  CAS  Google Scholar 

  • Chen, S., & Liu, Y. (2007). Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst. Chemosphere, 67(5), 1010–1017.

    Article  CAS  Google Scholar 

  • Chu, W., & Wong, C. C. (2004). The photocatalytic degradation of dicamba in TiO2 suspensions with the help of hydrogen peroxide by different near UV irradiations. Water Research, 38(4), 1037–1043.

    Article  CAS  Google Scholar 

  • Chu, W., Choy, W. K., & So, T. Y. (2007). The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline. Journal of Hazardous Materials, 141(1), 86–91.

    Article  CAS  Google Scholar 

  • Chu, W., Gao, N., Li, C., & Cui, J. (2009). Photochemical degradation of typical halogenated herbicide 2,4-D in drinking water with UV/H2O2/micro-aeration. Science in China. Series B: Chemistry, 52(12), 2351–2357.

    Article  CAS  Google Scholar 

  • Daneshvar, N., Salari, D., & Khataee, A. R. (2004). Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 162(2–3), 317–322.

    Article  CAS  Google Scholar 

  • Duan, X., Li, X., Wang, A., Teng, Y., Wang, Y., & Hu, Y. (2010). Effect of TiO2 on hydrodenitrogenation performances of MCM-41 supported molybdenum phosphides. Catalysis Today, 149(1–2), 11–18.

    Article  CAS  Google Scholar 

  • Franzén, M., Gustafsson, K., Hallqvist, H., Niemi, L., Wallander, J., Thorin, C., & Örn, P. (2007). The impact of herbicide tolerant crops on some environmental quality objectives. <http://www2.jordbruksverket.se/webdav/files/SJV/trycksaker/Pdf_rapporter/ra07_21gb.pdf. Accessed 30 May 11.

  • Grossmann, K., & Scheltrup, F. (1998). Studies on the mechanism of selectivity of the auxin herbicide quinmerac. Pesticide Science, 52(2), 111–118.

    Article  CAS  Google Scholar 

  • Haque, M. M., & Muneer, M. (2007). Photodegradation of norfloxacin in aqueous suspensions of titanium dioxide. Journal of Hazardous Materials, 145(1–2), 51–57.

    Article  CAS  Google Scholar 

  • Konstantinou, I. K., & Albanis, T. A. (2003). Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: Intermediates and degradation pathways. Applied Catalysis B: Environmental, 42(4), 319–335.

    Article  CAS  Google Scholar 

  • Lair, A., Ferronato, C., Chovelon, J. M., & Herrmann, J. M. (2008). Naphthalene degradation in water by heterogeneous photocatalysis: An investigation of the influence of inorganic anions. Journal of Photochemistry and Photobiology A: Chemistry, 193(2–3), 193–203.

    Article  CAS  Google Scholar 

  • Muneer, M., & Bahnemann, D. (2002). Semiconductor-mediated photocatalyzed degradation of two selected pesticide derivates, terbacil and 2,4,5-tribromoimidazole, in aqueous suspension. Applied Catalysis B: Environmental, 36(2), 95–111.

    Article  CAS  Google Scholar 

  • Muruganandham, M., & Swaminathan, M. (2006). Photocatalytic decolourisation and degradation of reactive orange 4 by TiO2-UV process. Dyes and Pigment, 68(2–3), 133–142.

    Article  CAS  Google Scholar 

  • Navío, J. A., Macias, M., Garcia-Gómez, M., & Pradera, M. A. (2008). Functionalisation versus mineralization of some N-heterocyclic compounds upon UV-illumination in the presence of un-doped and iron-doped TiO2 photocatalysts. Applied Catalysis B: Environmental, 82(3–4), 225–232.

    Article  Google Scholar 

  • Ogunsola, O. M. (2000). Decomposition of isoquinoline and quinoline by supercritical water. Journal of Hazardous Materials, B74(3), 187–195.

    Article  Google Scholar 

  • Prados-Joya, G., Sánchez-Polo, M., Rivera-Utrilla, J., & Ferro-garcìa, M. (2011). Photodegradation of the antibiotics nitroimidazoles in aqueous solution by ultraviolet radiation. Water Research, 45(1), 393–403.

    Article  CAS  Google Scholar 

  • Qamar, M., Muneer, M., & Bahnemann, D. (2006). Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspension of titanium dioxide. Journal of Environmental Management, 80(2), 99–106.

    Article  CAS  Google Scholar 

  • San, N., Hatipoğlu, A., Koçtürk, G., & Çınar, Z. (2001). Prediction of primary intermediates and the photodegradation kinetics of 3-aminophenol in aqueous TiO2 suspension. Journal of Photochemistry and Photobiology A: Chemistry, 139(2–3), 225–232.

    Article  CAS  Google Scholar 

  • Soboleva, N. M., Nosovich, A. A., & Goncharuk, V. V. (2007). The heterogenic photocatalysis in water treatment processes. Journal of Water Chemistry and Technology, 29(2), 72–89.

    Article  Google Scholar 

  • Šojić, D. V., Anderluh, V. B., Orčić, D. Z., & Abramović, B. F. (2009). Photodegradation of clopyralid in TiO2 suspensions: Identification of intermediates and reaction pathways. Journal of Hazardous Materials, 168(1), 94–101.

    Article  Google Scholar 

  • Šojić, D., Despotović, V., Abramović, B., Todorova, N., Giannakopoulou, T., & Trapalis, C. (2010a). Photocatalytic degradation of mecoprop and clopyralid in aqueous suspensions of nanostructured N-doped TiO2. Molecules, 15(5), 2994–3009.

    Article  Google Scholar 

  • Šojić, D. V., Despotović, V. N., Abazović, N. D., Čomor, M. I., & Abramović, B. F. (2010b). Photocatalytic degradation of selected herbicides in aqueous suspensions of doped titania under visible light irradiation. Journal of Hazardous Materials, 179(1–3), 49–56.

    Google Scholar 

  • Tomlin, C. D. S. (Ed.). (2009). The pesticide manual (15th ed., pp. 1006–1007). Hampshire: Crop Protection Publications.

    Google Scholar 

  • Vasudevan, D., Cooper, E. M., & Van Exem, O. L. (2002). Sorption–desorption of ionogenic compounds at the mineral-water interface: Study of metal oxide-rich soils and pure-phase minerals. Environmental Science and Technology, 36(3), 501–511.

    Article  CAS  Google Scholar 

  • Vione, D., Khanra, S., Cucu Man, S., Maddigapu, P. R., Das, R., Arsene, C., Olariu, R. J., Maurino, V., & Minero, M. (2009). Inhibition vs. enhancement of the nitrate-induced phototransformation of organic substrates by the OH scavengers bicarbonate and carbonate. Water Research, 43(18), 4718–4728.

    Article  CAS  Google Scholar 

  • Wang, K. H., Hsieh, Y. H., Chou, M. Y., & Chang, C. Yu. (1999). Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution. Applied Catalysis B: Environmental, 21(1), 1–8.

    Article  Google Scholar 

  • Zhang, W. B., An, T. C., Xiao, X. M., Fu, J. M., Sheng, G. Y., & Cui, M. C. (2003). Photochemical degradation performance of quinoline aqueous solution in presence of hydrogen peroxide. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, A38(11), 2599–2611.

    CAS  Google Scholar 

Download references

Acknowledgments

This document has been produced with the financial assistance of the European Union (Project HU-SRB/0901/121/116 OCEEFPTRWR Optimization of Cost Effective and Environmentally Friendly Procedures for Treatment of Regional Water Resources). The contents of this document are the sole responsibility of the University of Novi Sad, Faculty of Sciences and can under no circumstances be regarded as reflecting the position of the European Union and/or the Managing Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biljana F. Abramović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

N. Despotović, V., F. Abramović, B., V. Šojić, D. et al. Photocatalytic Degradation of Herbicide Quinmerac in Various Types of Natural Water. Water Air Soil Pollut 223, 3009–3020 (2012). https://doi.org/10.1007/s11270-012-1084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1084-x

Keyword

Navigation