Skip to main content
Log in

Comparison of the Performance of Membrane and Conventional Sequencing Batch Reactors Degrading 4-Chlorophenol

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The biomass characteristics, the process performance, and the microbial community for a sequencing batch reactor (SBR) and a submerged membrane SBR (MSBR) were evaluated. A synthetic wastewater containing only 4-chlorophenol (4CP) was used as the sole source of carbon and energy. Degradation efficiencies of 4CP were higher than 99% for both reactors, and no significant differences on the 4CP degradation rates were observed for the SBR (116.9 ± 0.9 mg 4CP g VSS−1 h−1) as well as for the MSBR (117.3 ± 0.5 mg 4CP g VSS−1 h−1). Despite the similar results obtained for the physicochemical parameters, it was found that the biomass characteristics were different considering the sludge volumetric index, settling velocity, protein content in the mixer liquor, and total suspended solids in the effluent. The settling velocity was three times higher in the SBR than in the MSBR; however, a better quality, considering suspended solids, was observed for the MSBR. The protein concentration in the mixed liquor was higher in the MSBR than in the SBR, generating foaming problems in the MSBR. A similarity analysis was made with the Ochiai–Barkman index. Even though the reactors were inoculated with the same biomass, significant differences in the composition and populations dynamics were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • APHA, AWWA, & WEF. (2005). Standard methods for the examination of water and wastewater (21st ed.). Baltimore: Port City Press.

    Google Scholar 

  • Arrojo, B., Mosquera-Corra, A., Garrido, J. M., Méndez, R., Ficara, E., & Malpei, F. (2005). A membrane coupled to a sequencing batch reactor for water reuse and removal of coliform bacteria. Desalination, 179, 109–116.

    Article  CAS  Google Scholar 

  • Bae, T. Y., Han, S.-S., & Tak, T. M. (2003). Membrane sequencing batch reactor system for the treatment of dairy industry wastewater. Process Biochemistry, 39, 221–231.

    Article  CAS  Google Scholar 

  • Beun, J. J., van Loosdrecht, M. C. M., & Heijnen, J. J. (2002). Aerobic granulation in a sequencing batch airlift reactor. Water Research, 36, 702–712.

    Article  CAS  Google Scholar 

  • Carucci, A., Milia, S., Cappai, G., & Muntoni, A. (2010). A direct comparison amongst different technologies (aerobic granular sludge, SBR and MBR) for the treatment of wastewater contaminated by 4-chlorophenol. Journal of Hazardous Materials, 177, 1119–1125.

    Article  CAS  Google Scholar 

  • Chen, J., Rulkens, W. H., & Bruning, H. (1997). Photochemical elimination of phenols and COD in industrial wastewaters. Water Science and Technology, 35, 231–238.

    Article  CAS  Google Scholar 

  • Cicek, N., Macomber, J., Davel, J., Suidan, M. T., Audic, J., & Genestet, P. (2001). Effect of solids retention time on the performance and biological characteristics of a membrane bioreactor. Water Science and Technology, 43(11), 43–50.

    CAS  Google Scholar 

  • Coello Oviedo, M. D., López-Ramírez, J. A., Sales, D., & Quiroga, J. M. (2003). Evolution of an activated sludge system under starvation conditions. Journal of Chemical Engineering, 94, 139–146.

    Article  CAS  Google Scholar 

  • de Kreuk, M. K., & van Loosdrecht, M. C. M. (2004). Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Science and Technology, 49(11–12), 9–17.

    Google Scholar 

  • Delbés, C., Moletta, R., & Godon, J. J. (2000). Monitoring of activity dynamics o fan anaerobic digester bacterial community using 16S rRNA polymerase chain-single-strand conformation polymorphism analysis. Environmental Microbiology, 2, 506–515.

    Article  Google Scholar 

  • Di Bella, C., Torregrossa, M., & Viviani, G. (2011). The role of EPS concentration in MBR foaming: analysis of a submerged pilot plant. Bioresource Technology, 102, 1628–1635.

    Article  Google Scholar 

  • Etchebere, C., Errazquin, M. I., Dabert, P., Moletta, R., & Mixí, L. (2001). Evaluation of the denitrifying microbiota of anoxic reactors. FEMS Microbiology Ecology, 35, 259–267.

    Article  Google Scholar 

  • Fan, F., Zhou, H., & Husain, H. (2006). Identification of wastewater sludge characteristics to predict critical flux for membrane bioreactor processes. Water Research, 40, 205–212.

    Article  CAS  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9. art. 4.

    Google Scholar 

  • Holbrook, R. D., Massie, K. A., & Novak, J. T. (2005). A comparison of membrane bioreactor and conventional-activated-sludge mixed liquor and biosolids characteristics. Water Environmental Research, 77, 323–330.

    Article  CAS  Google Scholar 

  • Judd, S. (2006). The MBR book. Principles and applications of membrane bioreactors in water and wastewaters treatment. Oxford: Elsevier.

    Google Scholar 

  • Kang, I.-J., Lee, C.-K., & Kim, K.-J. (2003). Characteristics of microfiltration membranes in a membrane coupled sequencing batch reactor system. Water Research, 37, 1192–1197.

    Article  CAS  Google Scholar 

  • Le-Clech, P., Chen, V., & Fane, A. G. (2006). Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science, 284, 17–53.

    Article  CAS  Google Scholar 

  • Lesjean, B., Rosenberger, S., Laabs, C., Jekel, M., Gnirss, R., & Amy, G. (2005). Correlation between membrane fouling and soluble/collidal organic substances in membrane bioreactors for municipal wastewater treatment. Water Science and Technology, 51(6/7), 1–8.

    CAS  Google Scholar 

  • Li, X., Gao, F., Hua, Z., Du, G., & Chen, J. (2005). Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling. Separation and Purification Technology, 46, 19–25.

    Article  CAS  Google Scholar 

  • Liang, S., Liu, C., & Song, L. (2007). Soluble microbial products in membrane bioreactor operation: behaviors, characteristics, and fouling potential. Water Research, 41, 95–101.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Mace, S., & Mata-Alvarez, J. (2002). Utilization of SBR technology for wastewater treatment: an overview. Industrial and Engineering Chemistry Research, 41, 5539–5553.

    Article  CAS  Google Scholar 

  • McAdam, E., Judo, S. J., Glidemeister, R., Drews, A., & Kraume, M. (2005). Critical analysis of submerged membrane sequencing batch reactor conditions. Water Research, 39, 4011–4019.

    Article  CAS  Google Scholar 

  • McSwain, B. S., Irvine, R. L., & Wilderer, P. A. (2004). The influence of settling time on the formation of aerobic granules. Water Science and Technology, 50(10), 195–202.

    CAS  Google Scholar 

  • Molina-Muñoz, M., Poyatos, J. M., Sánchez-Peinado, M., Hontoria, E., González-López, J., & Rodelas, B. (2009). Microbial community structure and dynamics in a pilot-scale submerged membrane bioreactor aerobically treating domestic wastewater under real operation conditions. Science of the Total Environment, 407, 3994–4003.

    Article  Google Scholar 

  • Moreno-Andrade, I., & Buitrón, G. (2004). Variation of the microbial activity during the acclimation phase of a SBR system degrading 4-chlorophenol. Water Science and Technology, 50(10), 251–258.

    CAS  Google Scholar 

  • Moreno-Andrade, I., Buitrón, G., Betancur, M. J., & Moreno, J. A. (2006a). Control strategy for the optimal degradation of inhibitory wastewater in a discontinuous bioreactor. Journal of Chemical Technology and Biotechnology, 81(4), 713–720.

    Article  CAS  Google Scholar 

  • Moreno-Andrade, I., Lopez-Vidal, Y., & Buitrón, G. (2006b). Effect of the starvation in the activity and viability of Pseudomonas aeruginosa ATCC 10145 acclimated to degrade 4-chlorophenol in a discontinuous reactor. Water Science and Technology, 54(10), 163–168.

    Article  CAS  Google Scholar 

  • Muyzer, G., & Ramsing, N. B. (1995). Molecular methods to study the organization of microbial communities. Archives of Microbiology, 32, 1–9.

    CAS  Google Scholar 

  • Pritchard, P. H., O’Neill, E. J., Spain, C. M., & Ahearn, D. J. (1987). Physical and biological parameters that determine the fate of p-chlorophenol in laboratory test systems. Applied and Environmental Microbiology, 53, 1833–1838.

    CAS  Google Scholar 

  • Sapila, P., Keskinen, A.-K., Akerman, M.-L., Fortelius, C., Haahtela, K., & Yrjälä, K. (2008). High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME Journal, 2, 968–981.

    Article  Google Scholar 

  • Scheumann, R., & Kraume, M. (2009). Influence of hydraulic retention time on the operation of a submerged membrane sequencing batch reactor (SM-SBR) for the treatment of greywater. Desalination, 246, 444–445.

    Article  CAS  Google Scholar 

  • Shannon, C. R., & Weaver, W. (1963). The mathematical theory of communication. Urbana: University of Illinois Press.

    Google Scholar 

  • Sharma, A., Thakur, I. S., & Dureja, P. (2009). Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site. Biodegradation, 20, 643–650.

    Article  CAS  Google Scholar 

  • Tao, G., Kekre, K., Wei, Z., Lee, T. C., Viswanath, B., & Seah, H. (2005). Membrane bioreactors for water reclamation. Water Science and Technology, 51(6–7), 431–440.

    CAS  Google Scholar 

  • Thanh, B. X., Spérandio, M., Guigui, C., Aim, R. B., Wan, J., & Visvanathan, C. (2010). Coupling sequencing batch airlift reactor (SBAR) and membrane filtration: influence of nitrate removal on sludge characteristics, effluent quality and filterability. Desalination, 250, 850–854.

    Article  CAS  Google Scholar 

  • Tsilogeorgis, J. A., Zouboulis, A., Samaras, P., & Zamboulis, D. (2008). Application of a membrane sequencing batch reactor for landfill leachate treatment. Desalination, 221, 483–493.

    Article  CAS  Google Scholar 

  • Vargas, A., Moreno-Andrade, I., & Buitrón, G. (2008). Controlled backwashing in a membrane sequencing batch reactor used for toxic wastewater treatment. Journal of Membrane Science, 320, 185–190.

    Article  CAS  Google Scholar 

  • Wilderer, P. A., Irvine, R. L., & Goronszy, M. C. (2001). Sequencing batch reactor technolog Scientific and Technical Report Series No. 10 (p. 100). London: IWA Publishing.

    Google Scholar 

Download references

Acknowledgments

Financial support was provided by Fondo de Investigación del Instituto de Ingeniería of the Universidad Nacional Autónoma de México (Proyectos internos A2) and Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (Project IN104710). Jaime Perez Trevilla and Gloria Moreno are acknowledged for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán Buitrón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno-Andrade, I., Buitrón, G. Comparison of the Performance of Membrane and Conventional Sequencing Batch Reactors Degrading 4-Chlorophenol. Water Air Soil Pollut 223, 2083–2091 (2012). https://doi.org/10.1007/s11270-011-1006-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-1006-3

Keywords