Skip to main content
Log in

Modeling Adaptive Mutation of Enteric Bacteria in Surface Water Using Agent-Based Methods

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Mechanistic models of enteric bacteria fate and transport in surface waters are important tools for research and management. The existing modeling approach typically assumes that bacteria die in a first-order fashion, but a recent study suggests that bacteria can mutate relatively rapidly to a strain better adapted to the surface water environment. We built an agent-based model that simulates individual wild-type and mutant Escherichia coli cells. The bacteria die, grow on the natural assimilable organic carbon available to E. coli, divide and mutate. We apply the model to laboratory experiments (from the literature and new ones) and the Charles River in Boston. Laboratory applications include decay, growth, and competition (between wild-type and mutant) in various types of surface water. For decay experiments, the stochastic mutation process in the model can produce both first-order and biphasic decay patterns, which is consistent with observations in the literature. For the Charles River, the model can reproduce the main patterns observed in the field data. The model applications provide evidence in support of the mutation mechanism. However, the mutation model does not produce better predictions for the Charles River than a previous model based on labile and resistant subpopulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Auer, M. T., & Niehaus, S. L. (1993). Modeling fecal coliform bacteria—I. Field and laboratory determination of loss kinetics. Water Research, 27, 693–701.

    Article  Google Scholar 

  • Blumberg, A. F., & Mellor, G. L. (1987). A description of a three-dimensional coastal ocean circulation model. In N. Heaps (Ed.), Three-dimensional coastal ocean models (pp. 1–16). Washington: American Geophysical Union.

    Chapter  Google Scholar 

  • Bucci, V., Vulić, M., Ruan, X., & Hellweger, F. L. (2011). Population dynamics of Escherichia coli in surface water. Journal of the American Water Resources Association. http://onlinelibrary.wiley.com/, doi:10.1111/j.1752-1688.2011.00528.x/abstract.

  • Camper, A. K., McFeters, G. A., Characklis, W. G., & Jones, W. L. (1991). Growth kinetics of coliform bacteria under conditions relevant to drinking water distributions systems. Applied and Environmental Microbiology, 57, 2233–2239.

    CAS  Google Scholar 

  • Campos, P. R. A., & de Oliveria, V. M. (2003). Scale-free networks in evolution. Physica A, 325, 570–576.

    Article  Google Scholar 

  • Chandaran, A., & Hatha, A. A. M. (2005). Relative survival of Escherichia coli and Salmonella typhimurium in a tropical estuary. Water Research, 39(7), 1397–1403.

    Article  Google Scholar 

  • Chapra, S. C. (1997). Surface water-quality modeling. Boston, MA: McGraw-Hill.

    Google Scholar 

  • Chapra, S. C., & Pelletier, G. J. (2003). QUAL2K: a modeling framework for simulating river and stream water quality: documentation and users manual. Medford, MA: Tufts University.

    Google Scholar 

  • Collins, R., & Rutherford, K. (2004). Modelling bacterial water quality in streams draining pastoral land. Water Research, 38, 700–712.

    Article  CAS  Google Scholar 

  • Connolly, J. P., Coffin, R. B., & Landeck, R. E. (1992). Modeling carbon utilization by bacteria in natural water systems. In C. Hurst (Ed.), Modeling the metabolic and physiologic activities of microorganisms (pp. 249–276). New York: Wiley.

    Google Scholar 

  • Di Toro, D. M., Fitzpatrick, J. J., & Thomann, R. V. (1983). Documentation for Water Quality Analysis Simulation Program (WASP) and Model Verification Program (MVP). New Jersey: Hydroscience.

    Google Scholar 

  • Dutka, B. J., & Kwan, K. K. (1980). Bacterial die-off and stream transport studies. Water Research, 14, 909–915.

    Article  Google Scholar 

  • Easton, J. H., Gauthier, J. J., Lalor, M. M., & Pitt, R. E. (2005). Die-off of pathogenic E. coli O157:H7 in sewage contaminated waters. Journal of the American Water Resources Association, 41(5), 1187–1193.

    Article  CAS  Google Scholar 

  • EPA. (2005). Microbial source tracking guide document. EPA/600/R-05/064. Washington: Environmental Protection Agency.

    Google Scholar 

  • EPA. (2009). National water quality inventory. Washington, DC: Environmental Protection Agency. http://www.epa.gov/305b/2000report/. Accessed 24 Feb 2009

  • Escobar, I. C., & Randall, A. A. (2001). Assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC): complementary measurements. Water Research, 35(18), 4444–4454.

    Article  CAS  Google Scholar 

  • Finkel, S. (2006). Long-term survival during stationary phase: evolution and the GASP phenotype. Nature Reviews Microbiology, 2, 113–120.

    Article  Google Scholar 

  • Garcia-Armisen, T., Thouvenin, B., & Servais, P. (2006). Modelling faecal coliforms dynamics in the Seine estuary, France. Water Science and Technology, 54(3), 177–184.

    Article  CAS  Google Scholar 

  • Garnier, J., Servais, P., Billen, G., Akopian, M., & Brion, N. (2001). Lower Seine River and Estuary (France) carbon and oxygen budgets during low flow. Estuaries, 24(6B), 964–976.

    Article  CAS  Google Scholar 

  • Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: a review and first update. Ecological Modelling, 221(23), 2760–2768.

    Article  Google Scholar 

  • Grover, J. P. (1990). Resource competition in a variable environment: phytoplankton growing according to Monod’s model. The American Naturalist, 136(6), 771–789.

    Article  Google Scholar 

  • Gunter, S. E., & Kohn, H. I. (1956). Effect of X-rays on the survival of bacteria and yeast II. Relation of cell concentration and endogenous respiration to sensitivity. Journal of Bacteriology, 72, 422–428.

    CAS  Google Scholar 

  • Hammes, F. A., & Egli, T. (2005). New method for assimilable organic carbon determination using flow-cytometric enumeration and a natural microbial consortium as inoculum. Environmental Science & Technology, 39(9), 3289–3294.

    Article  CAS  Google Scholar 

  • Hellweger, F. L. (2008). Spatially explicit individual-based modeling using a fixed super-individual density. Computers & Geosciences, 34, 144–152.

    Article  Google Scholar 

  • Hellweger, F. L. (2010a). Resonating circadian clocks enhance fitness in cyanobacteria in silico. Ecological Modelling, 221, 1620–1629.

    Article  CAS  Google Scholar 

  • Hellweger, F. L. (2010b). Wildtype and mutant E. coli in the Charles River. YouTube video. http://youtu.be/yHyDySZ-kLU. Accessed 18 Sept 2011.

  • Hellweger, F. L. (2010c). E. coli age distribution at community boating (density). YouTube video. http://youtu.be/Wn4OHr28tsE. Accessed 18 Sept 2011.

  • Hellweger, F. L. (2010d). E. coli age distribution at community boating (fraction). YouTube video. http://youtu.be/JGzEbELOmXs. Accessed 18 Sept 2011.

  • Hellweger, F. L., & Bucci, V. (2009). A bunch of tiny individuals—individual-based modeling for microbes (review paper). Ecological Modelling, 220(1), 8–22.

    Article  Google Scholar 

  • Hellweger, F. L., & Kianirad, E. (2007a). Individual-based modeling of phytoplankton: evaluating approaches for applying the cell quota model. Journal of Theoretical Biology, 249, 554–565.

    Article  Google Scholar 

  • Hellweger, F. L., & Kianirad, E. (2007b). Accounting for intra-population variability in biogeochemical models using agent-based methods. Environmental Science & Technology, 41(8), 2855–2860.

    Article  CAS  Google Scholar 

  • Hellweger, F. L., & Masopust, P. (2008). Investigating the fate and transport of E. coli in the Charles River, Boston using high-resolution observation and modeling. Journal of the American Water Resources Association, 44(2), 509–522.

    Article  Google Scholar 

  • Hellweger, F. L., Bucci, V., Litman, M. R., Gu, A. Z., & Onnis-Hayden, A. (2009). Biphasic decay kinetics of fecal bacteria in surface water: not a density effect. ASCE Journal Environmental Engineering, 135, 372–376.

    Article  CAS  Google Scholar 

  • Hem, L. J., & Efraimsen, H. (2001). Assimilable organic carbon in molecular weight fractions of organic matter. Water Research, 35, 1106–1111.

    Article  CAS  Google Scholar 

  • Hipsey, M. R., Antenucci, J. P., & Brookes, J. D. (2008). A generic, process-based model of microbial pollution in aquatic systems. Water Resources Research, 44, W07048.

    Article  Google Scholar 

  • HydroQual (2002). A primer for ECOMSED, version 1.3, users manual. New Jersey: HydroQual.

  • HydroQual (2004). User’s guide for RCA (Release 3.0). New Jersey: HydroQual.

  • Jurtshuk, P., Jr., & McQuitty, D. N. (1976). Use of a quantitative oxidase test for characterizing oxidative metabolism in bacteria. Applied and Environmental Microbiology, 31, 668–679.

    CAS  Google Scholar 

  • Kreft, J. U., Booth, G., & Wimpenny, J. W. T. (1998). BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology, 144, 3275–3287.

    Article  CAS  Google Scholar 

  • LeChavelier, M. W., Shaw, N. E., Kaplan, L. A., & Bott, T. L. (1993). Development of a rapid assimilable organic carbon method for water. Applied and Environmental Microbiology, 59(5), 1526–1531.

    Google Scholar 

  • Loferer-Krößbacher, M., Klima, J., & Psenner, R. (1998). Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Applied and Environmental Microbiology, 64(2), 688–694.

    Google Scholar 

  • Martin, J. L., & Wool, T. (2002). A dynamic one dimensional model of hydrodynamics and water quality EPD-RIV1, version 1.0. User’s manual. Athens, GA: AScI Cooperation.

  • Medema, G. J., Bahar, M., & Schets, F. M. (1997). Survival of Cryptosporidium parvum, Escherichia coli, faecal enterococci and Clostridium perfringens in river water: influence of temperature and autochthonous microorganisms. Water Science and Technology, 35(11), 249–252.

    Article  CAS  Google Scholar 

  • Miller, M. P., McKnight, D. M., Chapra, S. C., & Williams, M. W. (2009). A model of degradation and production of three pools of dissolved organic matter in an alpine lake. Limnology and Oceanography, 54(6), 2213–2227.

    Article  Google Scholar 

  • Munro, P. M., Flatau, G. N., Clément, R. L., & Gauthier, M. J. (1995). Influence of the RpoS (KatF) sigma factor on maintenance of viability and culturability of Escherichia coli and Salmonella typhimurium in seawater. Applied and Environmental Microbiology, 61(5), 1853–1858.

    CAS  Google Scholar 

  • Roszak, D. B., & Colwell, R. R. (1987). Survival strategies of bacteria in the natural environment. Microbiology Reviews, 51(3), 365–379.

    CAS  Google Scholar 

  • Servais, P., Anzil, A., & Ventresque, C. (1989). A simple method for the determination of biodegradable dissolved organic carbon in water. Applied and Environmental Microbiology, 55, 2732–2734.

    CAS  Google Scholar 

  • Servais, P., Billen, G., Goncalves, A., & Garcia-Armisen, T. (2007). Modelling microbiological water quality in the Seine river drainage network: past, present and future situations. Hydrology and Earth System Science, 11, 1581–1592.

    Article  Google Scholar 

  • Søndergaard, M., & Middleboe, M. (1995). A cross-system analysis of labile dissolved organic carbon. Marine Ecological Progress Series, 118, 283–294.

    Article  Google Scholar 

  • Stearns & Wheler Engineers. (1979). Onondaga lake storms impact study. Cazenovia, NY: Stearns and Wheler.

    Google Scholar 

  • Steets, B. M., & Holden, P. A. (2003). A mechanistic model of runoff-associated fecal coliform fate and transport through a coastal lagoon. Water Research, 37, 589–608.

    Article  CAS  Google Scholar 

  • Thomann, R. V., & Mueller, J. A. (1987). Principles of surface water quality modeling and control. New York: HarperCollins.

    Google Scholar 

  • Vital, M., Füchslin, H. P., Hammes, F., & Egli, T. (2007). Growth of Vibrio cholerae O1 Ogawa Eltor in freshwater. Microbiology, 153, 1993–2001.

    Article  CAS  Google Scholar 

  • Vital, M., Hammes, F., & Egli, T. (2008). Escherichia coli O157 can grow in natural freshwater at low carbon concentrations. Environmental Microbiology, 10(9), 2387–2396.

    Article  CAS  Google Scholar 

  • Vulić, M., & Kolter, R. (2001). Evolutionary cheating in Escherichia coli stationary phase cultures. Genetics, 158, 519–526.

    Google Scholar 

  • Wang, Y., Hammes, F., Boon, N., & Egli, T. (2007). Quantification of the filterability of freshwater bacteria through 0.45, 0.22, and 0.1 micron pore size filters and shape-dependent enrichment of filterable bacterial communities. Environmental Science & Technology, 41(20), 7080–7086.

    Article  CAS  Google Scholar 

  • Wetzel, R. G. (2001). Limnology. Lake and river ecosystems (3rd ed.). San Diego: Academic.

    Google Scholar 

  • WHO, 2011. http://www.who.int/water_sanitation_health/facts_figures/en/index.html. Accessed 30 March 2011.

  • Zambrano, M. M., Siegele, D. A., Almiron, M., Tormo, A., & Kolter, R. (1993). Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science, 259(5102), 1757–1760.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation. Two anonymous reviewers provided constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdi L. Hellweger.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

PDF 150 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucci, V., Hoover, S. & Hellweger, F.L. Modeling Adaptive Mutation of Enteric Bacteria in Surface Water Using Agent-Based Methods. Water Air Soil Pollut 223, 2035–2049 (2012). https://doi.org/10.1007/s11270-011-1003-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-1003-6

Keywords

Navigation