Water, Air, & Soil Pollution

, Volume 223, Issue 5, pp 2023–2034 | Cite as

Biodegradability Improvement of Sulfamethazine Solutions by Means of an electro-Fenton Process

  • Dorsaf Mansour
  • Florence Fourcade
  • Nizar Bellakhal
  • Mohamed Dachraoui
  • Didier Hauchard
  • Abdeltif Amrane
Article

Abstract

The main objective of this study was to examine the effect of an electro-Fenton pretreatment on the biodegradability of sulfamethazine-polluted solutions. The aim of the pretreatment was only to degrade this molecule in order to increase the biodegradability of the effluent and therefore allow a subsequent biological treatment. Preliminary tests showed the absence of biodegradability of the target compound. The degradation of sulfamethazine by electro-Fenton process was then examined using a carbon felt cathode and a platinum anode in an electrochemical reactor containing 1 L of solution. The influence of some experimental parameters such as initial concentration, temperature and current intensity on the degradation by electro-Fenton step has been investigated. In addition, the biodegradability of the solution after electrochemical pretreatment was examined and showed a Biological Oxygen Demand (BOD5) on Chemical Oxygen Demand (COD) ratio above the limit of biodegradability, namely 0.4, for several experimental conditions. The feasibility of coupling an electro-Fenton pretreatment with a biological degradation of by-products in order to mineralize polluted solutions of sulfamethazine was confirmed.

Keywords

Biodegradability improvement Electro-Fenton pretreatment Coupled processes Drug removal Sulfatmethazine 

References

  1. Abdelmalek, F., Ghezzar, M. R., Belhadj, M., Addou, A., & Brisset, J. L. (2006). Bleaching and degradation of textile dyes by nonthermal plasma process at atmospheric pressure. Industrial and Engineering Chemistry Research, 45, 23–29.CrossRefGoogle Scholar
  2. Abdessalem, A. K., Bellakhal, N., Oturan, N., Dachraoui, M., & Oturan, M. A. (2010). Treatment of a mixture of three pesticides by photo- and electro-Fenton processes. Desalination, 250, 450–455.CrossRefGoogle Scholar
  3. Abdessalem, A. K., Oturan, N., Bellakhal, N., Dachraoui, M., & Oturan, M. A. (2008). Experimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron. Applied Catalysis B: Environmental, 78, 334–341.CrossRefGoogle Scholar
  4. Atmaca, E. (2009). Treatment of landfill leachate by using electro-Fenton method. Journal of Hazardous Materials, 163, 109–114.CrossRefGoogle Scholar
  5. Boye, B., Dieng, M. M., & Brillas, E. (2003). Anodic oxidation, electro-Fenton and photoelectro-Fenton treatments of 2,4,5-trichlorophenoxyacetic acid. Journal of Electroanalytical Chemistry, 557, 135–146.CrossRefGoogle Scholar
  6. Brillas, E., Stirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry. Chemical Reviews, 109, 6570–6631.CrossRefGoogle Scholar
  7. Chebli, D., Fourcade, F., Brosillon, S., Nacef, S., & Amrane, A. (2010). Supported photocatalysis as a pre-treatment prior to biological degradation for the removal of some dyes from aqueous solutions; Acid Red 183, Biebrich Scarlet, Methyl Red Sodium Salt, Orange II. Journal of Chemical Technology and Biotechnology, 85, 555–563.Google Scholar
  8. Dhaouadi, A., Monser, L., & Adhoum, N. (2009). Anodic oxidation and electro-Fenton treatment of rotenone. Electrochimica Acta, 54, 4473–4480.CrossRefGoogle Scholar
  9. Diagne, M., Oturan, N., & Oturan, M. A. (2007). Removal of methyl parathion from water by electrochemically generated Fenton's reagent. Chemosphere, 66, 841–848.CrossRefGoogle Scholar
  10. El-Desokya, H. S., Ghoneima, M. M., El-Sheikhb, R., & Zidana, N. M. (2010). Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton's reagent. Journal of Hazardous Materials, 175, 858–865.CrossRefGoogle Scholar
  11. Fındık, S., & Gunduz, G. (2007). Sonolytic degradation of acetic acid in aqueous solutions. Ultrasonics Sonochemistry, 14, 157–162.CrossRefGoogle Scholar
  12. Flox, C., Ammar, S., Arias, C., Brillas, E., Vargas-Zavala, A. V., & Abdelhedi, R. (2006). Electro-Fenton and photoelectron-Fenton degradation of indigo carmine in acidic aqueous medium. Applied Catalysis B: Environmental, 67, 93–104.CrossRefGoogle Scholar
  13. Hammami, S., Bellakhal, N., Oturan, N., Oturan, M. A., & Dachraoui, M. (2008). Degradation of Acid Orange 7 by electrochemically generated OH radicals in acidic aqueous medium using a boron-doped diamond or platinum anode: A mechanistic study. Chemosphere, 73, 678–684.CrossRefGoogle Scholar
  14. Hammami, S., Oturan, N., Bellakhal, N., Dachraoui, M., & Oturan, M. A. (2007). Oxidative degradation of direct orange 61 by electro-Fenton process using a carbon felt electrode: Application of the experimental design methodology. Journal of Electroanalytical Chemistry, 610, 75–84.CrossRefGoogle Scholar
  15. Jho, E. H., Singhal, N., & Turner, S. (2010). Fenton degradation of tetrachloroethene and hexachloroethane in Fe(II) catalyzed systems. Journal of Hazardous Materials, 184, 234–240.CrossRefGoogle Scholar
  16. Kaniou, S., Pitarakis, K., Barlagianni, I., & Poulios, I. (2005). Photocatalytic oxidation of sulfamethazine. Chemosphere, 60, 372–380.CrossRefGoogle Scholar
  17. Kummerer, K. (2001). Drugs in the environment: Emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources. A review. Chemosphere, 45, 957–969.CrossRefGoogle Scholar
  18. Kummerer, K. (2004). Pharmaceuticals in the environment (p. 45). New York: Springer.Google Scholar
  19. Lei, H., Li, H., Li, Z., Li, Z., Chen, K., Zhang, X., et al. (2010). Electro-Fenton degradation of cationic red X-GRL using an activated carbon fiber cathode. Process Safety and Environmental Protection, 88, 431–438.CrossRefGoogle Scholar
  20. Lévi, Y., & Cargouët, M. (2004). Nouveaux micropolluants des eaux et nouveaux risques sanitaires. Actualite Chimique, 277–278, 49–56.Google Scholar
  21. Lodha, B., & Chaudhari, S. (2007). Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions. Journal of Hazardous Materials, 148, 459–466.CrossRefGoogle Scholar
  22. Masomboona, N., Ratanatamskulb, C., & Luc, M. C. (2010). Chemical oxidation of 2,6-dimethylaniline by electrochemically generated Fenton's reagent. Journal of Hazardous Materials, 176, 92–98.CrossRefGoogle Scholar
  23. Oturan, M. A. (2000). An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 2,4-D. Journal of Applied Electrochemistry, 30, 475–482.CrossRefGoogle Scholar
  24. Özcan, A., Oturan, M. A., Oturan, N., & Sahin, Y. (2009). Removal of Acid Orange 7 from water by electrochemically generated Fenton's reagent. Journal of Hazardous Materials, 163, 1213–1220.CrossRefGoogle Scholar
  25. Panizza, M., & Cerisola, G. (2009). Electro-Fenton degradation of synthetic dyes. Water Research, 43, 339–344.CrossRefGoogle Scholar
  26. Qiang, Z., Chang, J. H., & Huang, C. P. (2003). Electrochemical regeneration of Fe2+ in Fenton oxidation processes. Water Research, 37, 1308–1319.CrossRefGoogle Scholar
  27. Sacher, F., Lange, T. F., Brauch, H. J., & Blankenhorn, I. (2001). Pharmaceuticals in groundwaters. Analytical methods and results of a monitoring program in Baden-Wurttemberg, Germany. Journal of Chromatography. A, 938, 199–210.CrossRefGoogle Scholar
  28. Salles, N. A., Fourcade, F., Geneste, F., Floner, D., & Amrane, A. (2010). Relevance of an electrochemical process prior to a biological treatment for the removal of an organophosphorous pesticide, phosmet. Journal of Hazardous Materials, 181, 617–623.CrossRefGoogle Scholar
  29. Shu, H. Y., & Chang, M. C. (2005). Decolorization effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes. Dyes and Pigments, 65, 25–31.CrossRefGoogle Scholar
  30. Sun, J. H., Sun, S. P., Fan, M. H., Guo, H. Q., Qiao, L. P., & Sun, R. X. (2007). A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process. Journal of Hazardous Materials, 148, 172–177.CrossRefGoogle Scholar
  31. Swaminathan, K., Sandhya, S., Sophia, A. C., Pachhade, K., & Subrahmanyam, Y. V. (2003). Decolorization and degradation of H-acid and other dyes using ferrous–hydrogen peroxide system. Chemosphere, 50, 619–625.CrossRefGoogle Scholar
  32. Wang, C. T., Chou, W. L., Chung, M. H., & Kuo, Y. M. (2010). COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode. Desalination, 253, 129–134.CrossRefGoogle Scholar
  33. Wang, C. T., Hu, J. L., Chou, W. L., & Kuo, Y. M. (2008). Removal of color from real dyeing wastewater by electro-Fenton technology using a three-dimensional graphite cathode. Journal of Hazardous Materials, 152, 601–606.CrossRefGoogle Scholar
  34. Xie, Y. B., & Li, X. Z. (2006). Interactive oxidation of photoelectrocatalysis and electro-Fenton for azo dye degradation using TiO2_Ti mesh and reticulated vitreous carbon electrodes. Materials Chemistry and Physics, 95, 39–50.CrossRefGoogle Scholar
  35. Yang, H., Li, G., An, T., Gao, Y., & Fu, J. (2010). Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: A case of sulfa drugs. Catalysis Today, 153, 200–207.CrossRefGoogle Scholar
  36. Yao, J. J., Gao, N. Y., Li, C., Li, L., & Xu, B. (2010). Mechanism and kinetics of parathion degradation under ultrasonic irradiation. Journal of Hazardous Materials, 175, 138–145.CrossRefGoogle Scholar
  37. Zhang, H., Fei, C., Zhang, D., & Tang, F. (2007). Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. Journal of Hazardous Materials, 145, 227–232.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Dorsaf Mansour
    • 1
    • 2
    • 4
    • 5
  • Florence Fourcade
    • 1
    • 5
  • Nizar Bellakhal
    • 2
    • 4
  • Mohamed Dachraoui
    • 2
  • Didier Hauchard
    • 3
    • 5
  • Abdeltif Amrane
    • 1
    • 5
  1. 1.Université Rennes 1, Ecole Nationale Supérieure de Chimie de Rennes, CNRSRennes Cedex 7France
  2. 2.Laboratoire de Chimie Analytique et Électrochimie, Département de ChimieFaculté des Sciences de TunisTunisTunisie
  3. 3.Ecole Nationale Supérieure de Chimie de Rennes, CNRSRennes Cedex 7France
  4. 4.Institut National des Sciences Appliquées et de TechnologieTunis CedexTunisie
  5. 5.Université Européenne de BretagneRennesFrance

Personalised recommendations