Skip to main content

Advertisement

Log in

Carbon Dioxide Capture with Amine-Grafted Activated Carbon

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

There are several possible methods by which amine groups can be grafted on the surface of activated carbon (AC) to improve their capacity for CO2 adsorption. Ethylenediamine and diethylenetriamine were selected as amino compounds for anchoring on the surface of an oxidized AC. Oxidation of AC was carried out by concentrated nitric acid. For each amino compound, two “in-solvent” and “solvent-free” methods with a number of grafting times were studied. Nitrogen adsorption–desorption at 77 K and proximate and ultimate analysis were used to determine physical and chemical characteristics of the samples. Temperature-programmed (TP) CO2 adsorption test from 30°C to 120°C were performed to investigate the effect of modification on CO2 capture. The modification clearly had a negative effect on the textural characteristics of the samples, so the samples showed a less CO2 uptake at lower temperatures. However, the decrease of capture capacity with increasing temperature is to somewhat softer for amine-grafted samples, so that they have a capacity comparable to the parent sample or even more than that at elevated temperatures. This property may give the new adsorbents this opportunity to be used at flue gas temperature with a higher efficiency. CO2 capture capacity per unit surface area of all the amine-modified samples, however, was significantly improved, compared to the parent sample presenting a great influence of amino groups on the CO2 capture capacity. Moreover, the used amine compounds and grafting methods were compared in terms of adsorbent characteristics and CO2 uptake curves. Cyclic adsorption–desorption tests showed a satisfactory regeneration for the modified samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arenillas, A., Rubiera, F., Parra, J. B., Ania, C. O., & Pis, J. J. (2005). Surface modification of low cost carbons for their application in the environmental protection. Applied Surface Science, 252, 619–624.

    Article  CAS  Google Scholar 

  • Bezerra, D., Oliveira, R., Vieira, R., Cavalcante, C., & Azevedo, D. (2011). Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X. Adsorption, 17, 235–246.

    Article  CAS  Google Scholar 

  • Chaffee, A. L., Knowles, G. P., Liang, Z., Zhang, J., Xiao, P., & Webley, P. A. (2007). CO2 capture by adsorption: Materials and process development. International journal o f greenhouse gas control, 1, 11–18.

    Article  CAS  Google Scholar 

  • Contarini, S., Barbini, M., Del Piero, G., Gambarotta, E., Mazzamurro, G., Riocci, M., et al. (2003). Solid sorbents for the reversible capture of carbon dioxide. Greenhouse Gas Control Technologies, 1, 169–174.

    Article  CAS  Google Scholar 

  • Drage, T. C., Arenillas, A., Smith, K. M., Pevida, C., Piippo, S., & Snape, C. E. (2007). Preparation of carbon dioxide adsorbents from the chemical activation of urea–formaldehyde and melamine–formaldehyde resins. Fuel, 86, 22–31.

    Article  CAS  Google Scholar 

  • El-Sayed, Y., & Bandosz, T. J. (2001). A study of acetaldehyde adsorption on activated carbons. Journal of Colloid and Interface Science, 242, 44–51.

    Article  CAS  Google Scholar 

  • Gomes, H. T., Machado, B. F., Ribeiro, A., Moreira, I., Rosario, M., Silva, A. M. T., et al. (2008). Catalytic properties of carbon materials for wet oxidation of aniline. Journal of Hazardous Materials, 159, 420–426.

    Article  CAS  Google Scholar 

  • Gorgulho, H. F., Mesquita, J. P., Goncalves, F., Pereira, M. F. R., & Figueiredo, J. L. (2008). Characterization of the surface chemistry of carbon materials by potentiometric titrations and temperature-programmed desorption. Carbon, 46, 1544–1555.

    Article  CAS  Google Scholar 

  • Gray, M. L., Soong, Y., Champagne, K. J., Baltrus, J., Stevens, R. W., Toochinda, P., et al. (2004). CO2 capture by amine-enriched fly ash carbon sorbents. Separation and Purification Technology, 35, 31–36.

    Article  CAS  Google Scholar 

  • Grondein, A., & Bélanger, D. (2011). Chemical modification of carbon powders with aminophenyl and aryl-aliphatic amine groups by reduction of in situ generated diazonium cations: Applicability of the grafted powder towards CO2 capture. Fuel, 90, 2684–2693.

    Article  CAS  Google Scholar 

  • Guo, J., & Lua, A. C. (2002). Characterization of adsorbent prepared from oil-palm shell by CO2 activation for removal of gaseous pollutants. Materials Letters, 55, 334–339.

    Article  CAS  Google Scholar 

  • Guo, B., Chang, L., & Xie, K. (2006). Adsorption of carbon dioxide on activated carbon. Journal of Natural Gas Chemistry, 15, 223–229.

    Article  CAS  Google Scholar 

  • Harlick, P. J. E., & Sayari, A. (2005). Amine grafted, pore-expanded MCM-41 for acid gas removal: Effect of grafting temperature, water, and amine type on performance. Molecular Sieves: From Basic Research to Industrial Applications, Pts a and B, 158, 987–994.

    Google Scholar 

  • Hiyoshi, N., Yogo, K., & Yashima, T. (2004). Adsorption of carbon dioxide on modified mesoporous materials in the presence of water vapor. Recent Advances in the Science and Technology of Zeolites and Related Materials, Pts a - C, 154, 2995–3002.

    Article  Google Scholar 

  • Hiyoshi, N., Yogo, K., & Yashima, T. (2005). Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous Mesoporous Mater, 84, 357–365.

    Article  CAS  Google Scholar 

  • Houshmand, A., Wan Daud, W. M. A., & Shafeeyan, M. S. (2011). Exploring potential methods for anchoring amine groups on the surface of activated carbon for CO2 adsorption. Separation Science and Technology, 46, 1098–1112.

    Article  CAS  Google Scholar 

  • Knowles, G. P., Graham, J. V., Delaney, S. W., & Chaffee, A. L. (2005). Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents. Fuel Process Technology, 86, 1435–1448.

    Article  CAS  Google Scholar 

  • Kodama, S., Habaki, H., Sekiguchi, H., & Kawasaki, J. (2002). Surface modification of adsorbents with dielectric barrier discharge. Thin Solid Films, 407, 151–155.

    Article  CAS  Google Scholar 

  • Marcoux, L., Kim, T.-W., Bilodeau, S., Kleitz, F., Ruren Xu, Z. G. J. C., & Wenfu, Y. (2007). Functionalized mesoporous organic–inorganic hybrids through pore surface-restricted post-polymerization (pp. 1836–1842). Elsevier: Stud. Surf. Sci. Catal.

    Google Scholar 

  • Maroto-Valer, M. M., Tang, Z., & Zhang, Y. Z. (2005). CO2 capture by activated and impregnated anthracites. Fuel Process Technology, 86, 1487–1502.

    Article  CAS  Google Scholar 

  • Maroto-Valer, M. M., Lu, Z., Zhang, Y. Z., & Tang, Z. (2008). Sorbents for CO2 capture from high carbon fly ashes. Waste Manage. (Oxford), 28, 2320–2328.

    Article  Google Scholar 

  • Pevida, C., Plaza, M. G., Arias, B., Fermoso, J., Rubiera, F., & Pis, J. J. (2008). Surface modification of activated carbons for CO2 capture. Applied Surface Science, 254, 7165–7172.

    Article  CAS  Google Scholar 

  • Pittman, J. C. U., He, G.-R., Wu, B., & Gardner, S. D. (1997a). Chemical modification of carbon fiber surfaces by nitric acid oxidation followed by reaction with tetraethylenepentamine. Carbon, 35, 317–331.

    Article  CAS  Google Scholar 

  • Pittman, J. C. U., He, G.-R., Wu, B., & Gardner, S. D. (1997b). Titration of tetraethylenepentamine (TEPA) and its phenyl isocyanate reaction products: a model correction factor for determination of TEPA grafted to carbon surfaces. Carbon, 35, 333–340.

    Article  CAS  Google Scholar 

  • Pittman, J. C. U., Wu, Z., Jiang, W., He, G.-R., & Wu, B. (1997c). Reactivities of amine functions grafted to carbon fiber surfaces by tetraethylenepentamine: Designing interfacial Bonding. Carbon, 35, 929–943.

    Article  CAS  Google Scholar 

  • Plaza, M. G., Pevida, C., Arenillas, A., Rubiera, F., & Pis, J. J. (2007). CO2 capture by adsorption with nitrogen enriched carbons. Fuel, 86, 2204–2212.

    Article  CAS  Google Scholar 

  • Plaza, M. G., Pevida, C., Arias, B., Fermoso, J., Arenillas, A., Rubiera, F., et al. (2008). Application of thermogravimetric analysis to the evaluation of animated solid sorbents for CO2 capture. Journal of Thermal Analysis and Calorimetry, 92, 601–606.

    Article  CAS  Google Scholar 

  • Plaza, M. G., Pevida, C., Arias, B., Casal, M. D., Martin, C. F., Fermoso, J., et al. (2009). Different approaches for the development of low-cost CO2 adsorbents. Journal of Environmental Engineering, 135, 426–432.

    Article  CAS  Google Scholar 

  • Przepiorski, J., Skrodzewicz, M., & Morawski, A. W. (2004). High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Applied Surface Science, 225, 235–242.

    Article  CAS  Google Scholar 

  • Shafeeyan, M. S., Daud, W. M. A. W., Houshmand, A., & Shamiri, A. (2010). A review on surface modification of activated carbon for carbon dioxide adsorption. J. Anal. Appl. Pyrolysis, 89, 143–151.

    Article  CAS  Google Scholar 

  • Shafeeyan, M. S., Daud, W. M. A. W., Houshmand, A., & Arami-Niya, A. (2011). Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation. Applied Surface Science, 257, 3936–3942.

    Article  CAS  Google Scholar 

  • Siriwardane, R. V., Shen, M. S., Fisher, E. P., & Poston, J. A. (2001). Adsorption of CO2 on molecular sieves and activated carbon. Energy & Fuels, 15, 279–284.

    Article  CAS  Google Scholar 

  • Tamai, H., Shiraki, K., Shiono, T., & Yasuda, H. (2006). Surface functionalization of mesoporous and microporous activated carbons by immobilization of diamine. Journal of Colloid and Interface Science, 295, 299–302.

    Article  CAS  Google Scholar 

  • Torres, J. D., Faria, E. A., & Prado, A. G. S. (2006). Thermodynamic studies of the interaction at the solid/liquid interface between metal ions and cellulose modified with ethylenediamine. Journal of Hazardous Materials, 129, 239–243.

    Article  CAS  Google Scholar 

  • Wang, N., Ma, L., Wang, A., Liu, Q., & Zhang, T. (2007). CO2 adsorption on SBA-15 modified by aminosilane. Chinese Journal of Catalysis, 28, 805–810.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by Ministry of Science, Technology and Innovations of Science fund “13-02-03-3070” and University of Malaya are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Mohd Ashri Wan Daud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houshmand, A., Daud, W.M.A.W., Lee, MG. et al. Carbon Dioxide Capture with Amine-Grafted Activated Carbon. Water Air Soil Pollut 223, 827–835 (2012). https://doi.org/10.1007/s11270-011-0905-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0905-7

Keywords

Navigation