Skip to main content
Log in

The Effect of Former Mining Activities on Contamination Dynamics in Sediments, Surface Water and Vegetation in El Avenque Stream, SE Spain

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This work aims to identify and characterize heavy metal contamination in a fluvial system from Cartagena–La Unión mining district (SE Spain). In order to assess the dynamics of transport and the accumulation of heavy metals, sediments, surface water and vegetation, samples along “El Avenque” stream were collected. The former direct dumps of wastes and the presence of tailing ponds adjacent to the watercourse have contributed to the total contamination of the stream. Total Cd (103 mg kg−1), Cu (259 mg kg−1), Pb (26,786 mg kg−1) and Zn (9,312 mg kg−1) in sediments were above the limits of European legislation, being highest where tailing ponds are located. Bioavailable metals were high (3.55 mg Cd kg−1, 6.45 mg Cu kg−1, 4,200 mg Pb kg−1 and 343 mg Zn kg−1) and followed the same trend than total contents. Metals in water were higher in sampling points close to ponds, exceeding World Health Organization guidelines for water quality. There is a direct effect of solubilisation of sediment metals in water with high contents of SO 2−4 , product of the oxidation of original sulphides. The mobility of metals varied significantly with shifts in pH. Downstream, available and soluble metals concentrations decreased mainly due to precipitation by increments in pH. As a general pattern, no metal was bioaccumulated by any tested plant. Thus, native vegetation has adopted physiological mechanisms not to accumulate metals. This information allows the understanding of the effect of mining activities on stream contamination, enforcing the immediate intervention to reduce risks related to metals’ mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida, C. M. R., Mucha, A. P., & Vasconcelos, M. T. S. D. (2006). Comparison of the role of the sea club-rush Scirpus maritimus and the sea rush Juncus maritimus in terms of concentration, speciation and bioaccumulation of metals in the estuarine sediment. Envirnomental Pollution, 142, 151–159.

    Article  CAS  Google Scholar 

  • Alpers, C.N., Nordstrom, D.K. (1999). Geochemical modelling of water-rock interactions in mining environments. In G.S. Plumlee, M.J. Logsdon (Eds.), The Environmental Geochemistry of Mineral Deposits. Part A. Processes, Methods, and Health Issues, Reviews in Economic Geology (pp 289–323). Littleton: Society of Economic Geologists.

  • Autier, V., & White, D. (2004). Examination of Cd sorption characteristics for a boreal soil near Fairbanks, Alaska. Journal of Hazardous Materials, 106, 149–155.

    Article  CAS  Google Scholar 

  • Bagayoko, M., N’Diaye, M. K., Dicko, M., & Tangara, B. (2007). Characterisation of soil degradation under intensive rice production in Office du Niger zone of Mali. In A. Bationo, B. Waswa, J. Kihara, & J. Kimetu (Eds.), Advances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities (pp. 133–138). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Burgos, P., Madejon, E., Perez de Mora, A., & Cabrera, F. (2006). Spatial variability of the chemical characteristics of a trace-element-contaminated soil befote and after remediation. Geoderma, 130, 157–175.

    Article  CAS  Google Scholar 

  • Chapman, B. M., Jones, D. R., & Jung, R. F. (1983). Processes controlling metal ion attenuation in (AMD) stream. Geochemica et Cosmochimica Acta, 47, 1959–1973.

    Article  Google Scholar 

  • Chopin, E. I. B., & Alloway, B. J. (2007). Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis, Ríotinto and Huelva, SW Spain. Science of the Total Environment, 373, 488–500.

    Article  CAS  Google Scholar 

  • Concas, A., Ardau, C., Cristini, A., Zuddas, P., & Cao, G. (2006). Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site. Chemosphere, 63, 244–253.

    Article  CAS  Google Scholar 

  • Conesa, H. M., Faz, A., & Arnaldos, R. (2006). Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Unión mining district (SE Spain). Science of the Total Environment, 366, 1–11.

    Article  CAS  Google Scholar 

  • Conesa, H. M., Robinson, B. H., Schulin, R., & Nowack, B. (2008). Metal extractability in acidic and neutral mine tailings from the Cartagena-La Union Mining District (SE Spain). Applied Geochemistry, 23, 1232–1240.

    Article  CAS  Google Scholar 

  • Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture.

  • Doumett, S., Lamperi, L., Checchini, L., Azzarello, E., Mugnai, S., Mancuso, S., et al. (2008). Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: Influence of different complexing agents. Chemosphere, 72, 1481–1490.

    Article  CAS  Google Scholar 

  • Duchaufour, P. (1970). Precis de Pedologie. Paris: Masson.

    Google Scholar 

  • Ernst, W. H. O. (1996). Bioavailability of heavy metals and decontamination of soils by plants. Applied Geochemistry, 11, 163–167.

    Article  CAS  Google Scholar 

  • Fernandez-Turiel, J. L., Aceňolaza, P., Medina, M. E., Llorens, J. F., & Sardi, F. (2001). Assessment of a smelter impact area using surface soils and plants. Environmetal Geochemistry and Health, 23, 65–78.

    Article  CAS  Google Scholar 

  • Ferreira da Silva, E., Cardoso Fonseca, E., Matos, J. X., Patinha, C., Reis, P., & Santos Oliveira, J. M. (2005). The effect of unconfined mine tailings on the geochemistry of soils, sediments and surface waters of the Lousal área (Iberian Pyrite Belt, Southern Portugal). Land Degradation & Development, 16, 213–228.

    Article  Google Scholar 

  • Franco-Hernández, M. O., Vásquez-Murrieta, M. S., Patiño-Siciliano, A., & Dendooven, L. (2010). Heavy metals concentration in plants growing on mine tailings in Central Mexico. Bioresource Technology, 101, 3864–3869.

    Article  Google Scholar 

  • Gibbs, J. R. (1977). Transport phases of transition metals in the Amazon and Yukon Rivers. Geological Society of America Bulletin, 88, 829–843.

    Article  CAS  Google Scholar 

  • Gieré, R., Sidenko, N. V., & Lazareva, E. V. (2003). The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Applied Geochemistry, 18, 1347–1359.

    Article  Google Scholar 

  • Grzebisz, W., Kocialkowski, W. Z., & Chudzinski, B. (1997). Copper geochemistry and availability in cultivated soils contaminated by a copper smelter. Journal of Geochemical Exploration, 58, 301–307.

    Article  CAS  Google Scholar 

  • Gustafsson, J.P. (2006). Visual Minteq ver 2.5. KTH, Department of Land and Water Resource Engineering, Stcokholm, Sweden.

  • Hansel, C., Fendorf, S., Sutton, S., & Newville, M. (2001). Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environmental Science and Technology, 35, 3863–3868.

    Article  CAS  Google Scholar 

  • Hatje, V., Payne, T. E., Hill, D. M., McOrist, G., Birch, G. F., & Szymczak, R. (2003). Kinetics of trace elements uptake and release by particles in estuarine waters: effects of pH, salinity and particle loading. Environmental Internationl, 29, 619–629.

    Article  CAS  Google Scholar 

  • Horowitz, A. J. (1991). A primer on sediment-trace element chemistry (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Kabata-Pendias, A. (2001). Trace elements in soils and plants (3rd ed.). New York: CRC Press.

    Google Scholar 

  • Kabata-Pendias, A. (2004). Soil—plant transfer of trace elements—and environmental issue. Geoderma, 122, 143–149.

    Article  CAS  Google Scholar 

  • Lindsay, W., & Norvell, W. (1978). Development of a DTPA soil test for Zn, Fe, Mn, and Cu. Soil Science Society of America Journal, 42, 421–428.

    Article  CAS  Google Scholar 

  • Manteca, J. I., & Ovejero, G. (1992). Los yacimientos Zn, Pb. Ag-Fe del distrito minero de La Unión-Cartagena. Bética Oriental. Col. Textos Universitarios, 15, 1085–1110.

    Google Scholar 

  • Melendo, M., Benítez, E., & Nogales, R. (2002). Assessment of the feasibility of endogenous Mediterranean species for phytoremediation of lead-contaminated areas. Fresenius Envirnomental Bulletin, 11, 1105–1109.

    CAS  Google Scholar 

  • Mertens, J., Vervaeke, P., De Schrijver, A., & Luyssaert, S. (2004). Metal uptake by young trees from dredged brackish sediment: limitations and possibilities for phytoextraction and phytostabilisation. Science of the Total Environment, 326, 209–215.

    Article  CAS  Google Scholar 

  • Mlayah, A., Ferreria da Silva, E., Rocha, F., Bem Hamza, Ch, Charef, A., & Noronha, F. (2009). The Oued Mellègue: mining activity, stream sediments and dispersion base metals in natural environments, North-western Tunisia. Journal of Geochemical Exploration, 102, 27–36.

    Article  CAS  Google Scholar 

  • Moreno-Jiménez, E., Peñalosa, J. M., Manzano, R., Carpena-Ruiz, R. O., Gamarra, R., & Esteban, E. (2009). Heavy metals distribution in soil surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. Journal of Hazardous Materials, 162, 854–859.

    Article  Google Scholar 

  • Navarro, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M. J., Vidal, J., Tovar, P. J., & Bech, J. (2008). Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. Journal of Geochemical Exploration, 96, 183–193.

    Article  CAS  Google Scholar 

  • Oen, I. S., Fernández, J. C., & Manteca, J. I. (1975). The lead-zinc and associated ores of La Unión, Sierra de Cartagena, Spain. Economic Geology, 70, 1259–1278.

    Article  Google Scholar 

  • Ottenhof, C., Faz, A., Arocena, J., Nierop, K., Verstraten, J., & van Mourik, J. (2007). Soil organic matter from pioneer species and its implications to phytostabilization of mine sites in the Sierra Cartagena (Spain). Chemosphere, 69, 1341–1350.

    Article  CAS  Google Scholar 

  • Peech, M. (1965). Hydrogen-ion activity. In C. A. Black (Ed.), Methods or soil analysis (pp. 914–916). Madison: American Society of Agronomy.

    Google Scholar 

  • Pestana, M. H. D., Formoso, M. L. L., & Teixeira, E. C. (1997). Heavy metals in stream sediments from copper and gold mining areas in southern Brazil. Journal of Geochemical Exploration, 58, 133–143.

    Article  CAS  Google Scholar 

  • Raskin, I., & Ensley, B. D. (2000). Phytoremediation of toxic metals: using plants to clean up the environment. New York: Wiley.

    Google Scholar 

  • Risser, J. A., & Baker, D. E. (1990). Testing soils for toxic metals. In R. L. Westerman (Ed.), Soil testing and plant analysis (pp. 275–298). Madison: Soil Science Society of America Special Publication.

    Google Scholar 

  • Ross, S. M., & Kaye, K. J. (1994). The meaning of metal toxicity in soil-plant system. In S. M. Ross (Ed.), Toxic metals in soil-plant systems (pp. 27–61). New York: Wiley.

    Google Scholar 

  • Segura, R., Arancibia, V., Zúñiga, M. C., & Pastén, P. (2006). Distribution of copper, zinc, lead and cadmium concentrations in stream sediments from the Mapocho River in Santiago, Chile. Journal of Geochemical Exploration, 91, 71–80.

    Article  CAS  Google Scholar 

  • Taylor, M. P. (2007). Distribution and storage of sediment-associated heavy metals downstream of the remediated Rum Jungle Mine on the East Branch of the Finnis River, Northern Territory, Australia. Journal of Geochemical Exploration, 92, 55–72.

    Article  CAS  Google Scholar 

  • Unterbrunner, R., Puschenreiter, M., Sommer, P., Wieshammer, G., Tlustoš, P., Zupan, M., et al. (2007). Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environmental Pollution, 148, 107–114.

    Article  CAS  Google Scholar 

  • Vilar, J. B., Egea Bruno, P.-M., & Fernández-Gutiérrez, J. C. (1991). La minería murciana contemporánea (1930–1985). Madrid: Instituto Tecnológico Geominero de España.

    Google Scholar 

  • WHO. (2006). Guidelines for drinking water quality, vol. 1. Recommendations (3rd ed.). Geneva: World Health Organization.

    Google Scholar 

Download references

Acknowledgements

This work has been funded by the European Union FP7 Project No: CP-IP 213968–2 IRIS. R. Zornoza acknowledges a “Juan de la Cierva” contract from the Ministry of Science and Innovation of the Government of Spain. J.A. Acosta acknowledges a grant from Fundacion Séneca of Comunidad Autónoma de Murcia (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Zornoza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zornoza, R., Carmona, D.M., Acosta, J.A. et al. The Effect of Former Mining Activities on Contamination Dynamics in Sediments, Surface Water and Vegetation in El Avenque Stream, SE Spain. Water Air Soil Pollut 223, 519–532 (2012). https://doi.org/10.1007/s11270-011-0879-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0879-5

Keywords

Navigation