Skip to main content
Log in

Sorption Behavior of Brilliant Blue FCF by a Fe-Zeolitic Tuff

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The adsorption of Brilliant Blue FCF from aqueous solution was evaluated using a Fe-zeolitic tuff. The adsorbent was characterized by scanning electron microscopy, IR spectroscopy and X-ray diffraction. Sorption kinetic, isotherms, dose and pH effects were determined and the adsorption behavior was analyzed. Kinetic pseudo-first order and linear isotherm models were successfully applied to the experimental results, indicating that the sorption mechanism is physisorption. Experiments in columns were performed and breakpoint was found in 100 min using a concentration of 5 mg/l.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bansal, R. C., Donnet, J. B., & Stoeckli, F. (1988). Active carbon. New York: Dekker.

    Google Scholar 

  • Berber-Mendoza, M. S., Leyva-Ramos, R., Alonso-Davila, P., Fuentes-Rubio, L., & Guerrero-Coronado, R. M. (2006). Comparison of isotherms for the ion exchange of Pb(II) from aqueous solution onto homoionic clinoptilolite. Journal of Colloid and Interface Science, 301, 40–45.

    Article  CAS  Google Scholar 

  • Breck, D. (1973). Zeolite molecular sieves. New York: Wiley-Interscience.

    Google Scholar 

  • Bullent, A., Turan, M., Ozdemir, O., & Celik, M. S. (2004). Color removal of reactive dyes from water by clinoptilolite. Journal of Environmental Science and Health, 39, 1251–1261.

    Article  Google Scholar 

  • Cortés, R., Martínez, V., & Solache, M. (2004). Evaluation of natural and surfactant-modified zeolites in the removal of cadmium from aqueous solutions. Separation Science and Technology, 39, 2711–2730.

    Article  Google Scholar 

  • Díaz-Nava, M. C., Olguín, M. T., Solache-Ríos, M., Alarcón-Herrera, M. T., & Aguilar-Elguezabal, A. (2005). Characterization and improvement of ion exchange capacities of Mexican clinoptilolite-rich tuffs. Journal of Inclusion Phenomena and Macrolytic Chemistry, 51, 231–240.

    Article  Google Scholar 

  • Doula, M. (2007). Synthesis of a clinoptilolite–Fe system with high Cu sorption capacity. Chemosphere, 67, 731–740.

    Article  CAS  Google Scholar 

  • El, A., Bassam, M., Bassam, E. A., & Ali, M. F. (2005). Handbook of industrial chemistry: Organic chemicals. New York: McGraw-Hill.

    Google Scholar 

  • García-Mendieta, A., Solache-Ríos, M., & Olguín, M. T. (2003). Comparison of phenol and 4-chlorophenol adsorption in activated carbon with different physical properties. Separation Science and Technology, 38, 2549–2564.

    Article  Google Scholar 

  • García-Mendieta, A., Solache-Ríos, M., & Olguín, M. T. (2009). Evaluation of the sorption properties of a Mexican clinoptilolite-rich tuff for iron, manganese and iron–manganese systems. Microporous and Mesoporous Materials, 118, 489–495.

    Article  Google Scholar 

  • Günay, A., Arslankaya, E., & Tosun, I. (2007). Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. Journal of Hazardous Materials, 146, 362–371.

    Article  Google Scholar 

  • Gutiérrez, S. E., Solache-Ríos, M., & Colin, A. (2009). Sorption of indigo carmine by a Fe-zeolitic tuff and carbonaceous material from pirolyzed sewage sludge. Journal of Hazardous Materials, 170, 1227-1235.

    Article  Google Scholar 

  • Haggerty, G. M., & Bowman, R. S. (1994). Sorption of chromate and other inorganic anions by organo-zeolite. Environment Science & Technology, 28, 452–458.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (2002). Application of kinetic models to the sorption of copper (II) on to peat. Adsorption Science and Technology, 20, 797–813.

    Article  CAS  Google Scholar 

  • Ho, Y. S., Chiu, W. T., Hsu, C. S., & Huang, C. T. (2004). Sorption of lead ions from aqueous solution using tree fern as a sorbent. Hydrometallurgy, 73, 55–61.

    Article  CAS  Google Scholar 

  • Kasiri, M. B., Aleboyeh, H., & Aleboyeh, A. (2008). Degradation of Acid Blue 74 using Fe-ZSM5 zeolite as a heterogeneous photo-Fenton catalyst. Applied Catalysis, 84, 9–15.

    Article  CAS  Google Scholar 

  • Malkoc, E., Nuhoglu, Y., & Abali, Y. (2006). Cr (VI) adsorption by waste acorn of Quercus ithaburensis in fixed beds: prediction of breakthrough curves. Chemical Engineering Journal, 119, 61–68.

    Article  CAS  Google Scholar 

  • Mittal, A. (2006). Use of hen feathers as potential adsorbent for the removal of a hazardous dye, Brilliant Blue FCF, from wastewater. Journal of Hazardous Materials, 128, 233–239.

    Article  CAS  Google Scholar 

  • Mumpton, F. A., & Orsmy, W. C. (1976). Morphology of zeolites in sedimentary rocks by scanning electron microscopy. Clays and Clay Minerals, 24, 1–23.

    Article  CAS  Google Scholar 

  • Netpradit, S., Thiravetyan, P., & Towprayoon, S. (2004). Evaluation of metal hydroxide sludge for reactive dye adsorption in a fixed-bed column system. Water Research, 38, 71–78.

    Article  CAS  Google Scholar 

  • San-Miguel, G., Lambert, S. D., & Graham, N. J. D. (2001). The regeneration of field-spent granular-activated carbons. Water Research, 35, 2740–2748.

    Article  CAS  Google Scholar 

  • Sprynskyy, M., Buszewski, B., Terzyk, A., & Namie’snik, J. (2006). Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+ and Cd2+) adsorption on clinoptilolite. Journal of Colloid and Interface Science, 304, 21–28.

    Article  CAS  Google Scholar 

  • Solache-Ríos, M. J., Villalva-Coyote, R., & Díaz-Nava, M. C. (2010). Sorption and desorption of remazol yellow by a Fe-zeolitic tuff. Journal of the Mexican Chemical Society, 54, 58–66.

    Google Scholar 

  • Torres-Pérez, J., Solache-Ríos, M., & Colín-Cruz, A. (2008). Sorption and desorption of dye remazol yellow onto a Mexican surfactant-modified clinoptilolite-rich tuff and a carbonaceous material from pyrolysis of sewage sludge. Water, Air, and Soil Pollution, 187, 303–313.

    Article  Google Scholar 

  • Trgo, M., & Perić, J. (2003). Interaction of the zeolitic tuff with Zn-containing simulated pollutant solutions. Journal of Colloid and Interface Science, 260, 166–175.

    Article  CAS  Google Scholar 

  • Tsitsishvili, G. V., Andronikashvili, T. G., Kirov, G. N., & Filizova, L. D. (1992). Natural zeolites, ed., Chichester, UK: Ellis Horwood.

  • Wang, S., & Ariyanto, E. (2007). Competitive adsorption of malachite green and Pb ions on natural zeolite. Journal of Colloid and Interface Science, 314, 25–31.

    Article  CAS  Google Scholar 

  • Wang, S., Boyjoo, Y., Choueib, A., & Zhu, Z. H. (2005). Removal of dyes from aqueous solution using fly ash and red mud. Water Research, 39, 129–138.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from CONACYT, project 131174Q.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Solache-Ríos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinedo-Hernández, S., Díaz-Nava, C. & Solache-Ríos, M. Sorption Behavior of Brilliant Blue FCF by a Fe-Zeolitic Tuff. Water Air Soil Pollut 223, 467–475 (2012). https://doi.org/10.1007/s11270-011-0877-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0877-7

Keywords

Navigation