Skip to main content
Log in

The Roles of Diethylenetriamine Pentaacetate (DTPA) and Ethylenediamine Disuccinate (EDDS) in Remediation of Selenium from Contaminated Soil by Brussels Sprouts (Brassica oleracea var. gemmifera)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the effects of adding different rates of diethylenetriamine pentaacetate (DTPA) at different concentrations (0, 0.5, 1, and 5 mmol kg−1) and ethylenediamine disuccinate (EDDS) at 0, 5, 7.5, and 10 mmol kg−1 on the capacity of Brussels sprouts plants to take up Se from soils contaminated with 0, 5, 10, and 15 mg kg−1 NaSeO4, under a greenhouse conditions. Results indicated that the application of DTPA and EDDS to Se-contaminated soils significantly affect plant Se concentration, Se uptake, and dry matter yield of plants. Se concentration in the plant leaves, stems, and roots increased with increase in DTPA and EDDS application doses, but total Se uptake increased from 0 to 1.0 and 7.5 mmol kg−1 DTPA and EDDS application doses, respectively, and decreased after those levels due to toxic Se concentration for plant. Most plant available fractions and the carbonate, metal oxide, and organic matter-bound fractions increased linearly with Se application. At all DTPA and EDDS application rates, the Se concentrations in the leaves were about two to three times higher than those in the roots and about three to four times higher than those in the stems. This study suggests that the above-ground organs like leaf and shoots of Brussels sprouts can effectively be used in the removal of Se from soils contaminated with Se. Under the conditions in this experiment, Brussels sprouts were capable of removing 0.9–1.8 mg Se pot−1 when harvested at maturity without any chelating agent take into consideration one growing season per year. Based on the data of present experiment, it would be necessary to approximately 57–67 growing seasons without EDDS and EDTA to remove all total Se from polluted soil. Selenium removal can be further increased 12- to 20-fold with 7.5 mmol kg−1 EDDS and 1.0 mmol kg−1 DTPA application, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, J. W., & Scarf, A. R. (1983). Selenium and plant metabolism. In D. A. Robb & W. S. Pierpoint (Eds.), Metals and micronutrient: Uptake and utilization by plants (pp. 241–275). New York: Academic.

    Google Scholar 

  • Angin, I., Turan, M., Kettering, Q. M., & Çakıcı, A. (2008). Humic acid addition enhances B and Pb phytoextraction by vetiver grass (Vetiveria zizanioides (L.) Nash). Water, Air, and Soil Pollution, 188, 335–343.

    Article  CAS  Google Scholar 

  • Banuelos, G. S., Ajwa, H. A., Mackey, B., Wu, L., Cook, C., Akohoue, S., et al. (1997). Evaluation of different plant species used for phytoremediation of high soil selenium. Journal Environment Quality, 26, 639–646.

    Article  CAS  Google Scholar 

  • Banuelos, G. S., Zambrzuski, S., & Mackey, B. (2000). Phytoextraction of selenium from soils irrigated with selenium-laden effluent. Plant Soil, 224, 251–258.

    Article  CAS  Google Scholar 

  • Dhillon, S. K., & Dhillon, K. S. (2009). Phytoremediation of selenium-contaminated soils: the efficiency of different cropping systems. Soil Use and Management, 25, 441–453.

    Article  Google Scholar 

  • Ducsay, L., & Lozek, O. (2006). Effects of selenium foliar application on its content in winter wheat grain. Plant and Soil Environment, 52, 78–82.

    CAS  Google Scholar 

  • Kabata-Pendıas, A., & Pendıas, H. (2000). Trace elements in soil and plants (2nd ed.). Boca Raton: CRC.

    Google Scholar 

  • Kos, B., & Leštan, D. (2003a). Influence of a biodegradable ([S, S]-EDDS) and non-degradable (EDTA) chelate and hydrogel modified soil water sorption capacity on Pb phytoextraction and leaching. Plant and Soil, 253, 403–411.

    Article  CAS  Google Scholar 

  • Kos, B., & Leštan, D. (2003b). Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environmental Science and Technology, 37, 624–629.

    Article  CAS  Google Scholar 

  • Kos, B., Grcman, B., & Lestan, D. (2003). Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant Soil and Environment, 49, 548–553.

    CAS  Google Scholar 

  • Li, H., McGrath, S. P., & Zhao, F. (2008). Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. The New Phytologist, 178, 92–102.

    Article  CAS  Google Scholar 

  • Lubben, S., & Sauerbeck, D. (1991). The uptake and distribution of heavy metals by spring wheat. Water, Air, and Soil Pollution, 57, 239–247.

    Article  Google Scholar 

  • Luo, C., Shen, Z., Li, X., & Baker, A. J. M. (2006). Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA-EDDS. Chemos, 63, 1773–1784.

    Article  CAS  Google Scholar 

  • McEldowney, S., Hardman, D. J., & Waite, S. (1993). Treatment technologies. In S. McEldowney, D. J. Hardman, & S. Waite (Eds.), Pollution ecology and biotreatment. Singapore: Longman Scientific & Technical.

    Google Scholar 

  • McGrath, S. P., Shen, Z. G., & Zhao, F. J. (1997). Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant and Soil, 188, 153–159.

    Article  CAS  Google Scholar 

  • McNeal, G. M., & Balistrieri, L. S. (1989). Geochemistry and occurrence of selenium: an overview. In L. W. Jacobs (Ed.), Selenium in agriculture and the environment. SSSA special publication no. 23 (pp. 1–13). Madison: ASA and SSSA.

    Google Scholar 

  • Mertens, D. (2005a). AOAC official method 922.02. Plants preparation of laboratory sample. In W. Horwitz & G. W. Latimer (Eds.), Official methods of analysis. Chapter 3 (18th ed., pp. 1–2). Gaithersburg: AOAC International.

    Google Scholar 

  • Mertens, D. (2005b). AOAC official method 975.03. Metal in plants and pet foods. In W. Horwitz & G. W. Latimer (Eds.), Official methods of analysis. Chapter 3 (18th ed., pp. 3–4). Gaithersburg: AOAC International.

    Google Scholar 

  • Mun, H. W., Hoe, A. L., & Koo, L. D. (2008). Assessment of Pb uptake, translocation and immobilization in kenaf (Hibiscus cannabinus L.) for phytoremediation of sand tailings. Journal of Environmental Sciences, 20, 1341–1347.

    Article  Google Scholar 

  • Paiva, H. N., Carvalho, J. G., & Sıqueıra, J. O. (2002). Indice de translocação de nutrientes em mudas de cedro (Cedrela fissilis Vell.) e de ipê-roxo (Tabebuia impetiginosa Mart. Standl.) submetidas a doses crescentes de cádmio, níquel e chumbo. Revista Árvore, 26, 467–473.

    Google Scholar 

  • Pezzarossa, B., Remorini, D., Piccotino, D., Malagoli, M., & Massai, R. (2009). Effects of selenate addition on selenium accumulation and plant growth of two Prunus rootstock genotypes. Journal of Plant Nutrition and Soil Science, 172, 261–269.

    Article  CAS  Google Scholar 

  • Reeves, R. D., & Baker, A. J. M. (2000). Metal accumulation in plants. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment (pp. 193–229). New York: Wiley.

    Google Scholar 

  • Sager, M., & Hoesch, J. (2006). Selenium uptake in cereals grown in lower Austria. Journal Central European Agriculture, 7, 71–78.

    Google Scholar 

  • Soil Survey Staff. (1992). Keys to soil taxonomy, 5th edition. SMSS technical monograph no: 19. Blacksburg: Pocahontas.

    Google Scholar 

  • SPSS Inc. (2004). SPSS® 13.0 base user’s guide. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Srivastava, M., Ma, Q., & Cotruva, J. A. (2005). Uptake and distribution of selenium in different fern species. International Journal of Phytoremediation, 7, 33–42.

    Article  CAS  Google Scholar 

  • Terry, N., Zayed, A. M., de Souza, M. P., & Tarun, A. S. (2000). Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 401–432.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Turan, M., & Angin, I. (2004). Organic chelate assisted phytoextraction of B, Cd, Mo and Pb from contaminated soils using two agricultural crop species. Acta Agriculturæ Scandinavica Section B, Soil and Plant Science, 54, 221–231.

    Article  CAS  Google Scholar 

  • Turan, M., & Esringu, A. (2007). Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb and Zn. Plant Soil Environment, 1, 7–15.

    Google Scholar 

  • USDA & NRSC (United States Department of Agriculture and National Resources Conservation Service). (2000). Soil Quality Institute, urban technical note no: 3, September 2000. Washington, DC: USDA & NRSC.

    Google Scholar 

  • Vogeler, I., Green, S. R., Clothier, B. E., Kirkham, M. B., & Robinson, B. H. (2001). Contaminant transport in the root zone. In I. K. Iskandar & M. B. Kirkham (Eds.), Trace elements in soils: Bioavailability, flux, and transfer (pp. 175–197). Boca Raton: Lewis.

    Google Scholar 

  • Wu, L. H., Sun, X. F., Luo, Y. M., Xing, X. R., & Christie, P. (2007). Influence of (S-S)-EDDS on phytoextraction of copper and zinc by Elsholtzia splendens from metal contaminated soil. International Journal of Phytoextraction, 9, 227–241.

    Article  CAS  Google Scholar 

  • Yadev, S., Gupta, S., Prakash, R., Spallholz, J., & Prakas, N. T. (2007). Selenium uptake by Allium cepa grown in Se-spiked soils. American-Eurasian Journal of Agriculture and Environment Science, 2, 80–84.

    Google Scholar 

  • Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of trace elements by wetland plants: I. Duckweed. Journal of Environmental Quality, 27, 715–721.

    Article  CAS  Google Scholar 

  • Zhang, L., Ackley, A. R., & Pilon-Simits, E. A. H. (2007). Variation in selenium tolerance and accumulation among 19 Arabidopsis thaliana accessions. Journal of Plant Physiology, 164, 327–336.

    Article  CAS  Google Scholar 

  • Zhao, C., Ren, J., Xue, C., & Lin, E. (2005). Study on the relationship between soil selenium and plant selenium uptake. Plant and Soil, 277, 197–206.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metin Turan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esringü, A., Turan, M. The Roles of Diethylenetriamine Pentaacetate (DTPA) and Ethylenediamine Disuccinate (EDDS) in Remediation of Selenium from Contaminated Soil by Brussels Sprouts (Brassica oleracea var. gemmifera). Water Air Soil Pollut 223, 351–362 (2012). https://doi.org/10.1007/s11270-011-0863-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0863-0

Keywords

Navigation