Skip to main content
Log in

Soil Acid-Base Chemistry of a High-Elevation Forest Watershed in the Great Smoky Mountains National Park: Influence of Acidic Deposition

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Understanding the acid-base chemistry of soil and the soil processes related to the release or retention of sulfate and nitrate is important in order to predict watershed recovery from long-term acid deposition. Soils were sampled from the Noland Divide Watershed (NDW), a small, high-elevation watershed in the Great Smoky Mountains National Park receiving high rates of acid deposition over several decades. Soil samples were measured for chemical properties related to acidification and used to conduct sulfate adsorption and nitrogen (N) incubation experiments. Shallow soil was higher in acidic and basic ions than deeper soils, and the mean effective cation exchange capacity was 8.07, 5.06, and 3.57 cmolc kg−1 in the A, Bw, and Cb horizons, respectively. In all three soil horizons, the base saturation was equal to or below 7% and the ratio of Ca/Al was below 0.01, indicating that the NDW is very sensitive to acid deposition. Based on results from sulfate adsorption isotherms, the NDW has not reached its maximum sulfate adsorption saturation and is likely able to retain further additions of sulfate. Desorption of sulfate from NDW soils is expected if sulfate concentrations in soil solution drop below 50 μeq L−1 but is highly dependent on soil pH and organic carbon content. Total soil organic N was 500 times greater than inorganic N in the A soil horizon, and net N mineralization and nitrification remained constant during a 28-day incubation indicating a large reservoir of N substrate for soil microbes. Nitrogen experiment results suggest that nitrate export from the watershed is largely controlled by biological processes rather than by nitrate deposition flux. Soil data collected in this study contributes to our understanding of biogeochemical processes affecting the response of acid-impacted ecosystems such as the NDW to future changes in atmospheric deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aber, J. D., Nadelhoffer, K. J., Steudler, P., & Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. BioScience, 39(6), 378–386.

    Article  Google Scholar 

  • Alewell, C. (2001). Predicting reversibility of acidification: the European sulfur story. Water, Air, and Soil Pollution, 130(1–4), 1271–1276.

    Article  Google Scholar 

  • Barker, M., Van Miegroet, H., Nicholas, N. S., & Creed, I. F. (2002). Variation in overstory nitrogen uptake in a small, high-elevation southern Appalachian spruce-fir watershed. Canadian Journal of Forest Research, 32(10), 1741–1752.

    Article  Google Scholar 

  • Blake, L., Goulding, K. W. T., Mott, C. J. B., & Johnston, A. E. (1999). Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station, UK. European Journal of Soil Biology, 50(3), 401–412.

    CAS  Google Scholar 

  • Burns, D. A., & Kendall, C. (2002). Analysis of δ15N and δ18O to differentiate NO -3 sources in runoff at two watersheds in the Catskill Mountains of New York. Water Resources Research, 38(5), 1051.

    Article  Google Scholar 

  • Cai, M., Schwartz, J. S., Robinson, R. B., Moore, S. E., & Kulp, M. A. (2010). Long-term effects of acidic deposition on water quality in a high-elevation Great Smoky Mountains National Park Watershed: use of an ion input–output budget. Water, Air, and Soil Pollution, 209(1–4), 143–156.

    Article  CAS  Google Scholar 

  • Campbell, D. H., Kendall, C., Chang, C. Y., Silva, S. R., & Tonnessen, K. A. (2002). Pathways for nitrate release from an alpine watershed: determination using δ15N and δ18O. Water Resources Research, 38(5), 1052.

    Article  Google Scholar 

  • Castro, M. S., & Morgan, R. P., II. (2000). Input-output budget of major ions for a forested watershed in Western Maryland. Water, Air, and Soil Pollution, 119(1–4), 121–137.

    Article  CAS  Google Scholar 

  • Chen, Y., & Lin, L. S. (2009). Responses of streams in central Appalachian Mountain region to reduced acidic deposition—comparisons with other regions in North America. Science of the Total Environment, 407(7), 2285–2295.

    Article  CAS  Google Scholar 

  • Cook, R. B., Elwood, J. W., Turner, R. R., Bogle, M. A., Mulholland, P. J., & Palumbo, V. A. (1994). Acid-base chemistry of high-elevation streams in the Great Smoky Mountains. Water, Air, and Soil Pollution, 72(1–4), 331–356.

    Article  CAS  Google Scholar 

  • Courchesne, F., & Hendershot, W. H. (1990). The role of basic aluminum sulfate minerals in controlling sulfate retention in the mineral horizons of two spodosols. Soil Science, 150(3), 571–578.

    Article  CAS  Google Scholar 

  • Cronan, C. S., & Grigal, D. F. (1995). Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. Journal of Environmental Quality, 24(2), 209–226.

    Article  CAS  Google Scholar 

  • Cronan, C. S., & Schofield, C. L. (1990). Relationships between aqueous aluminum and acid deposition in forested watersheds of North America and Northern Europe. Environmental Science and Technology, 24(7), 1100–1105.

    Article  CAS  Google Scholar 

  • Deyton, E. B., Schwartz, J. S., Robinson, B. R., Neff, K. J., Moore, S. E., & Kulp, M. A. (2009). Characterizing episodic stream acidity during stormflows in the Great Smoky Mountains National Park. Water, Air, and Soil Pollution, 196(1–4), 3–18.

    Article  CAS  Google Scholar 

  • Driscoll CT, Likens GE, & Church MR (1998) Recovery of surface waters in the northeastern U.S. from decreases in atmospheric deposition of sulfur. Water Air & Soil Pollution 105(1–2): 319–329.

    Google Scholar 

  • Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Bulter, T. J., Cronan, C. S., Eagar, C., et al. (2001). Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects, and management strategies. BioScience, 51(3), 180–197.

    Article  Google Scholar 

  • Driscoll, C. T., Driscoll, K. M., Mitchell, M. J., & Raynal, D. J. (2003). Effects of acidic deposition on forest and aquatic ecosystems in New York State. Environmental Pollution, 123(3), 327–336.

    Article  CAS  Google Scholar 

  • Elwood, J. W., Sale, M. J., Kaufmann, P. R., & Cada, G. F. (1991). The Southern Blue Ridge Province: effects of acidic deposition on streams, lakes and reservoirs. In D. F. Charles (Ed.), Acidic Deposition and Aquatic Ecosystems: Regional Case Studies. New York: Springer.

    Google Scholar 

  • Fenn, M. E., Poth, M. A., Aber, J. D., Baron, J. S., Bormann, B. T., Johnson, D. W., et al. (1998). Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecological Applications, 8(3), 706–733.

    Article  Google Scholar 

  • Fernandez, I. J., Rustad, L. E., Norton, S. A., Kahl, J. S., & Cosby, B. J. (2003). Experimental acidification causes soil base-cation depletion at the Bear Brook Watershed in Maine. Soil Science Society of America Journal, 67(6), 1909–1919.

    Article  CAS  Google Scholar 

  • Galloway, J. N., Norton, S. A., & Robbins Church, M. (1983). Freshwater acidification from atmospheric deposition of sulfuric acid: a conceptual model. Environmental Science and Technology, 17(11), 541A–545A.

    Article  CAS  Google Scholar 

  • Garten, C. T., Bondietti, E. A., & Lomax, R. D. (1988). Contribution of foliar leaching and dry deposition to sulfate in net throughfall below deciduous trees. Atmospheric Environment, 22(7), 1425–1432.

    Article  CAS  Google Scholar 

  • Gobran, G. R., Selim, H. M., Hultberg, H., & Andersson, I. (1998). Sulfate adsorption-desorption in a Swedish forest soil. Water, Air, and Soil Pollution, 108(3–4), 411–424.

    Article  CAS  Google Scholar 

  • Hach. (2005). BD-46 Block digestor, user manual.

  • Harrison, R. B., Johnson, D. W., & Todd, D. E. (1989). Sulfate adsorption and desorption reversibility in a variety of forest soils. Journal of Environmental Quality, 18, 419–426.

    Article  CAS  Google Scholar 

  • Hart, S. C., Stark, J. M., Davidson, E. A., & Firestone, M. K. (1994). Nitrogen mineralization, immobilization and nitrification. In R. W. Weaver (Ed.), Methods of soil analysis. Part 2. Microbial and biochemical properties (pp. 985–1018). Madison: SSSA.

    Google Scholar 

  • Helliwell, R. C., Ferrier, R. C., Evans, C. D., & Jenkins, A. (1998). A comparison of methods for estimating soil characteristics in regional acidification models; an application of the MAGIC model to Scotland. Hydrology and Earth System Science, 2(4), 509–520.

    Article  Google Scholar 

  • Herlihy, A. T., Kaufmann, P. R., Church, M. R., Wigginton, P. J., Jr., Webb, J. R., & Sale, M. J. (1993). The effects of acid deposition on streams in the Appalachian Mountains and Piedmont region of the mid-Atlantic United States. Water Resources Research, 29(8), 2687–2703.

    Article  CAS  Google Scholar 

  • Jefts, S. S., Fernandez, I. J., Rustad, L. E., & Dail, D. B. (2004). Comparing methods for assessing forest soil net nitrogen mineralization and net nitrification. Communications in Soil Science & Plant Analysis, 35(19–20), 2875–2890.

    Article  CAS  Google Scholar 

  • JMP. (2008). JMP 8 Introductory Guide. North Carolina: SAS Institute Inc.

    Google Scholar 

  • Johnson, D. W., & Lindberg, S. E. (1992). Atmospheric deposition and nutrient cycling in forest ecosystems: a synthesis of the Integrated Forest Study. New York: Springer.

    Book  Google Scholar 

  • Johnson, D. W., Van Miegroet, H., Lindberg, S. E., Todd, D. E., & Harrison, R. B. (1991). Nutrient cycling in red spruce forests of the Great Smoky Mountains. Canadian Journal of Forest Research, 21(6), 767–787.

    Article  Google Scholar 

  • Johnson, D. W., Swank, W. T., & Vose, J. M. (1993). Simulated effects of atmospheric sulfur deposition on nutrient cycling in a mixed deciduous forest. Biogeochemistry, 23(3), 169–196.

    Article  CAS  Google Scholar 

  • Joslin, J. D., Kelly, J. M., & Van Miegroet, H. (1992). Soil chemistry and nutrition of North American spruce-fir stands: evidence for recent change. Journal of Environmental Quality, 21(1), 12–30.

    Article  CAS  Google Scholar 

  • Kahl, J. S., Stoddard, J. L., Haeuber, R., Paulsen, S. G., Birnbaum, R., Deviney, F. A., et al. (2004). Have US surface waters responded to the 1990 Clean Air Act amendments? Environmental Science and Technology, 38(24), 484A–490A.

    Article  CAS  Google Scholar 

  • King, P.B., Neuman, R.B., & Hadley, J.B. (1968). Geology of the Great Smoky Mountains National Park, Tennessee and North Carolina. US Geological Survey professional paper #587, Washington D.C.

  • Koopmans, C. J., Lubrecht, W. C., & Tietema, A. (1995). Nitrogen transformations in two nitrogen saturated forest ecosystems subjected to an experimental decrease in nitrogen deposition. Plant & Soil, 175(2), 205–218.

    Article  CAS  Google Scholar 

  • Kros, J., Groenenberg, J. E., de Vries, W., & Van der Salm, C. (1995). Uncertainties in long-term predictions of forest soil acidification due to neglecting seasonal variability. Water, Air, and Soil Pollution, 79(1–4), 353–373.

    Article  CAS  Google Scholar 

  • Lawrence, G. B. (2002). Persistent episodic acidification of streams linked to acid rain effects on soil. Atmospheric Environment, 36(10), 1589–1598.

    Article  CAS  Google Scholar 

  • Lawrence, G. B., David, M. B., & Walter, C. S. (1995). A new mechanism for calcium loss in forest-floor soils. Nature (London), 378(6553), 162–165.

    Article  CAS  Google Scholar 

  • Likens, G. E., Driscoll, C. T., & Buso, D. C. (1996). Long-term effects of acid rain: response and recovery of a forest ecosystem. Science, 272(5259), 244–246.

    Article  CAS  Google Scholar 

  • Lindberg, S. E., & Garten, C. T., Jr. (1988). Sources of sulphur in forest canopy throughfall. Nature (London), 336(6195), 148–151.

    Article  CAS  Google Scholar 

  • Lindberg, S. E., & Lovett, G. M. (1992). Deposition and forest canopy interactions of airborn sulfur: results from the integrated forest study. Atmospheric Environment, 26A(8), 1477–1492.

    CAS  Google Scholar 

  • Malek, S., Martinson, L., & Sverdrup, H. (2005). Modelling future soil chemistry at a highly polluted forest site at Istebna in Southern Poland using the “SAFE” model. Environmental Pollution, 137(3), 568–573.

    Article  CAS  Google Scholar 

  • Manderscheid, B., Schweisser, T., Lischeid, G., Alewell, C., & Matzner, E. (2000). Sulfate pools in the weathered substrata of a forested catchment. Soil Science Society of America Journal, 64(3), 1078–1082.

    Article  CAS  Google Scholar 

  • Martinez, C. E., Kleinschmidt, A. W., & Tabatabai, M. A. (1998). Sulfate adsorption by variable charge soils: effect of low-molecular-weight organic acids. Biology & Fertility of Soils, 26(3), 157–163.

    Article  CAS  Google Scholar 

  • Martinson, L., & Alveteg, M. (2004). The importance of including the pH dependence of sulfate adsorption in a dynamic soil chemistry model. Water, Air, and Soil Pollution, 154(1–4), 349–356.

    Article  CAS  Google Scholar 

  • Martinson, L., Alveteg, M., & Warfvinge, P. (2003). Parameterization and evaluation of sulfate adsorption in a dynamic soil chemistry model. Environmental Pollution, 124(1), 119–125.

    Article  CAS  Google Scholar 

  • McCracken, R. J., Shanks, R. E., & Clebsch, E. E. C. (1962). Soil morphology and genesis at higher elevations of the Great Smoky Mountains. Soil Science Society of America Proceedings, 26, 384–388.

    Article  Google Scholar 

  • NADP. (2010). http://nadp.sws.uiuc.edu/sites/siteinfo.asp?net=MDN&id=TN11.

  • National Atmospheric Deposition Program (NADP). (2006). NADP data report 2006–01. Champaign: Illinois State Water Survey.

    Google Scholar 

  • Neff, K. J., Schwartz, J. S., Henry, T. B., Robinson, B. R., Moore, S. E., & Kulp, M. A. (2009). Physiological stress in native southern brook trout during episodic stream acidification in the Great Smoky Mountains National Park. Archives of Environmental Contamination and Toxicology, 57, 366–376. doi:10.1107/s00244-008-9269-4.

    Article  CAS  Google Scholar 

  • Nodvin, S. C., Driscoll, C. T., & Likens, G. E. (1986). The effect of pH on sulfate adsorption by a forest soil. Soil Science, 142(2), 69–75.

    Article  CAS  Google Scholar 

  • Nodvin, S. C., Van Miegroet, H., Lindberg, S. E., Nicholas, N. S., & Johnson, D. W. (1995). Acidic deposition, ecosystem processes, and nitrogen saturation in a high elevation Southern Appalachian watershed. Water, Air, and Soil Pollution, 85(3), 1647–1652.

    Article  CAS  Google Scholar 

  • Persson, T., & Wirén, A. (1995). Nitrogen mineralization and potential nitrification at different depths in acid forest soils. Plant & Soil, 168–169(1), 55–65.

    Article  Google Scholar 

  • Pigna, M., & Violante, A. (2003). Adsorption of sulfate and phosphate on Andisols. Communications in Soil Science & Plant Analysis, 34(15–16), 2099–2113.

    Article  CAS  Google Scholar 

  • Robinson, R. B., Barnett, T. W., Harwell, G. R., Moore, S. E., Kulp, M. A., & Schwartz, J. S. (2008). pH and acid anion time trends in different elevation ranges in the Great Smoky Mountain National Park. Journal of Environmental Engineering, 134(9), 800–808.

    Article  CAS  Google Scholar 

  • Rochelle, B. R., & Robbins Church, M. (1987). Regional patterns of sulfate retention in watersheds of the eastern US. Water, Air, and Soil Pollution, 36, 61–73.

    Article  CAS  Google Scholar 

  • Shanks, R. E. (1954). Climates of the Great Smoky Mountains. Ecology, 35(3), 354–284.

    Article  Google Scholar 

  • Shubzda, J., Lindberg, S. E., Garten, C. T., & Nodvin, S. C. (1995). Elevational trends in the fluxes of sulphur and nitrogen in throughfall in the Southern Appalachian Mountains: some surprising results. Water, Air, and Soil Pollution, 85(4), 2265–2270.

    Article  CAS  Google Scholar 

  • Silsbee, D. G., & Larson, G. L. (1982). Water quality of streams in the Great Smoky Mountains National Park. Hydrobiologia, 89(2), 97–115.

    Article  CAS  Google Scholar 

  • Sims, J. T. (1996). Lime requirement. In Methods of soil analysis. Part 3. Chemical methods (pp. 491–516). Madison: SSSA.

    Google Scholar 

  • Sokolova, T. A., & Alekseeva, S. A. (2008). Adsorption of sulfate ions by soils (a review). Eurasian Journal of Soil Science, 41(2), 140–148.

    Article  Google Scholar 

  • Stoddard, J. L., Jeffries, D. S., Lükewille, A., Clair, T. A., Dillon, P. J., Driscoll, C. T., et al. (1999). Regional trends in aquatic recovery from acidification in North America and Europe. Nature (London), 401(6753), 575–578.

    Article  CAS  Google Scholar 

  • Sullivan, T. J., Fernandez, I. J., Herlihy, A. T., Driscoll, C. T., McDonnell, T. C., Nowicki, N. A., et al. (2006). Acid-base characteristics of soils in the Adirondack Mountains, New York. Soil Science Society of America Journal, 70(1), 141–152.

    Article  CAS  Google Scholar 

  • Sullivan, T. J., Cosby, B. J., Webb, J. R., Dennis, R. L., Bulger, A. J., & Deviney, F. A., Jr. (2008). Streamwater acid-base chemistry and critical loads of atmospheric sulfur deposition in Shenandoah National Park, Virginia. Environmental Monitoring and Assessment, 137(1–3), 85–99.

    Article  CAS  Google Scholar 

  • Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3. Chemical methods (pp. 1201–1229). Madison: SSSA.

    Google Scholar 

  • Tabatabai, M. A. (1996). Sulfur. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3. Chemical methods (pp. 921–960). Madison: SSSA.

    Google Scholar 

  • Tao, F., Hayashi, Y., & Lin, E. (2002). Soil vulnerability and sensitivity to acid deposition in China. Water, Air, and Soil Pollution, 140(1–4), 247–260.

    Article  CAS  Google Scholar 

  • USEPA. (1994). Standard Operating Procedure for Total Kjeldahl Nitrogen (Lachat Method). Grace Analytical Lab. http://www.epa.gov/greatlakes/lmmb/methods/tknalr2.pdf. Accessed 28 July 2010.

  • USGS. (2005). Geologic map of the Great Smoky Mountains National Park Region, Tennessee and North Carolina. US Geological Survey Open-File Report 2005–1225. http://pubs.usgs.gov/of/2005/1225/. Accessed 2 March 2010.

  • Van Miegroet, H., Johnson, D. W., & Todd, D. E. (1993). Foliar response of red spruce saplings to fertilization with Ca and Mg in the Great Smoky Mountains National Park. Canadian Journal of Forest Research, 23(1), 89–95.

    Article  Google Scholar 

  • Van Miegroet, H., Creed, I. F., Nicholas, N. S., Tarboton, D. G., Webster, K. L., Shubzda, J., et al. (2001). Is there synchronicity in nitrogen input and output fluxes at the Noland Divide Watershed, a small N-saturated forested catchment in the Great Smoky Mountains National Park? Scientific World, 1, 480–492.

    Google Scholar 

  • Williard, K. W. J., DeWalle, D. R., Edwards, P. J., & Schnabel, R. R. (1997). Indicators of nitrate export from forested watersheds of the mid-Appalachians, United States of America. Global Biogeochemical Cycles, 11(4), 649–656.

    Article  CAS  Google Scholar 

  • Williard, K. W. J., DeWall, D. R., Edwards, P. J., & Sharpe, W. E. (2001). 18O isotopic separation of stream nitrate sources in mid-Appalachian forested watersheds. Journal of Hydrology, 252(1–4), 174–188.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded in part by the United States Department of Interior, National Park Service Cooperative Agreement Grant No. 1443-CA-5460-98-006 (Amendment 10), and the United States Environmental Protection Agency through the University of Tennessee Natural Research Policy Center, United States Environmental Protection Agency Grant No. EM-83298901-1. Special thanks are given to Galina Melnichenko for her instruction and measurement of organic nitrogen. We are thankful for the support of Dr. Nancy Finley, Natural Resource Research Director at the Great Smoky Mountain National Park. We appreciate the help of Joe Parker, Keil Neff, and Lee Mauney in field sampling work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy M. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, M., Johnson, A.M., Schwartz, J.S. et al. Soil Acid-Base Chemistry of a High-Elevation Forest Watershed in the Great Smoky Mountains National Park: Influence of Acidic Deposition. Water Air Soil Pollut 223, 289–303 (2012). https://doi.org/10.1007/s11270-011-0858-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0858-x

Keywords

Navigation