Skip to main content

Advertisement

Log in

Availability and Accumulation of Arsenic in Oilseeds Grown in Contaminated Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Arsenic occurs in the earth's crust in various chemical forms as a result of both natural and anthropogenic sources. Soil chemical extractions may help understand As availability, as well as the possibility of As entry into the food chain. Phytoextraction has been proposed as a technology for remediation of As-contaminated soils. The study was carried out to assess the bioavailability of As by extractants and to compare the performance of castor bean and sunflower for As removal from soils. Two soils were contaminated with Na2HAsO4.7H2O adding 35 and 150 mg As dm−3 soil. Arsenic availability was assessed using the following extractants: tri-distilled water, ammonium sulfate, ammonium phosphate, ammonium oxalate + oxalic acid, organic acids mixture, Mehlich-1, and United States Environmental Protection Agency 3051. The roots and shoots of 35-day-old plants were collected and dry matter yield as well as As concentration were determined. The accumulation of As in shoot was also calculated in order to evaluate the plants potential for As phytoextraction. The extractants tested were efficient to assess the concentration of available As in soil. Addition of As to the soils did not cause severe toxicity in plants, although the dose 150 mg As dm−3 soil decreased shoot and root yield in both species. Castor bean was less sensitive to As than sunflower, but none of the species had hyperaccumulation characteristics. These species can be used for revegetation of areas contaminated with As up to safe limit of 150 mg As dm−3 soil, as proposed by CONAMA for industrial areas in Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Araújo, J. C. T., & Nascimento, C. W. A. (2005). Fracionamento e disponibilidade de zinco por diferentes extratores em solos incubados com lodo de esgoto. Revista Brasileira de Ciência do Solo, 29, 977–985.

    Google Scholar 

  • ATSDR. (2007). CERCLA Priority List of Hazardous Substances. Agency for Toxic Substances and Disease Control. http://www.atsdr.cdc.gov/cercla/07list.html. Accessed 25 February 2009.

  • Baird, C. (2002). Química ambiental. 2.ed. Porto Alegre: Bookman, 621p.

  • Barra, C. M., Santelli, R. E., Abrão, J. J., & Guardia, M. L. (2000). Especiação de arsênio: uma revisão. Química Nova, 23, 58–70.

    Article  CAS  Google Scholar 

  • Burló, F., Guijarro, I., Carbonell-Barrachina, A. A., Vlaero, D., & Martínez-Sánchez, F. (1999). Arsenic species: effects on and accumulation by tomato plants. Journal of Agricultural and Food Chemistry, 47, 1247–1253.

    Article  Google Scholar 

  • Campos, M. L., Guilherme, L. R. G., Lopes, R. S., Antunes, A. S., Marques, J. J. G. S. M., & Curi, N. (2007). Teor e capacidade máxima de adsorção de arsênio em Latossolos brasileiros. Revista Brasileira de Ciência do Solo, 31, 1311–1318.

    Article  CAS  Google Scholar 

  • Carbonell, A. A., Aarabi, M. A., Delaune, R. D., Gambrell, R. P., & Patrick Junior, W. H. (1998). Arsenic in wetland vegetation: availability, phytotoxicity, uptake and effects on plant growth and nutrition. Science of the Total Environmental, 217, 189–199.

    Article  CAS  Google Scholar 

  • Conselho Nacional do Meio Ambiente – CONAMA. (2009). Resolução N° 420, de 28 de dezembro de 2009. “Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas”. Diário Oficial da República Federativa do Brasil, Brasília, DF, nº 249, de 30/12/2009, p. 81–84. http://www.mma.gov.br/port/conama/legiano1.cfm?codlegitipo=3&ano=2009. Accessed 10 May 2010.

  • Cunha, K. P. V., Nascimento, C. W. A., Accioly, A. M. A., Pimentel, R. M. M., & Silva, A. J. (2008). Disponibilidade, acúmulo e toxicidade de cádmio e zinco em milho (Zea mays L.) cultivado em solo contaminado. Revista Brasileira de Ciência do Solo, 32, 1319–1328.

    Article  Google Scholar 

  • Day, P. R. (1965). Particle fractionation and particle-size analysis. In C. A. BLACK (Ed.), Methods of soil analysis (pp. 545–566). Madison: American Society of Agronomy.

    Google Scholar 

  • De Filipo, B.V. & Ribeiro, A.C. (1997). Análise química do solo. Metodologia. 2.ed. Viçosa. Universidade Federal de Viçosa, 26p.

  • Dias, F. F., Allen, H. E., Guimarães, J. R., Taddei, M. H. T., Nascimento, M. R., & Guilherme, J. R. G. (2009). Environmental behavior of arsenic(III) and (V) in soils. Journal of Environmental Monitoring, 11, 1412–1420.

    Article  CAS  Google Scholar 

  • Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA (1999). Centro Nacional de Pesquisa de Solos. Manual de análises químicas de solos, plantas e fertilizantes. Brasília, DF: Embrapa Comunicação para Transferência de Tecnologia, 370 p.

  • Fitz, W. J., & Wenzel, W. W. (2002). Arsenic transformations in soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. Journal of Biotechnology, 99, 259–278.

    Article  CAS  Google Scholar 

  • Gonzaga, M. I. S., Santos, J. A. G., & Ma, L. Q. (2008). Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution. Environmental Pollution, 154, 212–218.

    Article  CAS  Google Scholar 

  • Habuda-Stanic, M., Kalajdzic, B., Kules, M., & Velic, N. (2008). Arsenite and arsenate sorption by hydrous ferric oxide/polymeric material. Desalination, 229, 1–9.

    Article  CAS  Google Scholar 

  • Lee, J. S., Lee, S. W., Chon, H. T., & Kim, K. W. (2008). Evaluation of human exposure to arsenic due to rice ingestion in the vicinity of abandoned Myungbong Au-Ag mine site, Korea. Journal of Geochemical Exploration, 96, 231–235.

    Article  CAS  Google Scholar 

  • Liu, Y., Wang, H. B., Wong, M. H., & Ye, Z. H. (2009). The role of arsenate reductase and superoxide dismutase in As accumulation in four Pteris species. Environment International, 35, 491–495.

    Article  CAS  Google Scholar 

  • McBride, M. B. (1994). Environmental chemistry of soils (p. 406p). New York: Oxford University.

    Google Scholar 

  • Nascimento, C. W. A., & Xing, B. (2006). Phytoextraction: a review on enhanced metal availability and plant accumulation. Scientia Agricola, 63, 299–311.

    Article  Google Scholar 

  • Nascimento, C. W. A., Fontes, R. L. F., Neves, J. C. L., & Melício, A. C. F. C. (2002). Fracionamento, dessorção e extração química de zinco em Latossolos. Revista Brasileira de Ciência do Solo, 26, 599–606.

    CAS  Google Scholar 

  • Pires, A. M. M., Mattiazzo, M. E., & Berton, R. S. (2004). Ácidos orgânicos como extratores de metais pesados fitodisponíveis em solos tratados com lodo de esgoto. Pesquisa Agropecuária Brasileira, 39, 671–676.

    Google Scholar 

  • Silva, S. R., Procópio, S. O., Queiroz, T. F. N., & Dias, L. E. (2004). Caracterização de rejeito de mineração de ouro para avaliação de solubilização de metais pesados e arsênio e revegetação local. Revista Brasileira de Ciência do Solo, 28, 189–197.

    Article  CAS  Google Scholar 

  • Smith, E., Naidu, R., & Alston, A. M. (1998). Arsenic in the soil environment: a review. Advances in Agronomy, 64, 149–195.

    Article  CAS  Google Scholar 

  • Tu, C., & Ma, L. Q. (2002). Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. Journal of Environmental Quality, 31, 641–647.

    Article  CAS  Google Scholar 

  • Tu, C., & Ma, L. Q. (2003). Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environmental and Experimental Botany, 50, 243–251.

    Article  CAS  Google Scholar 

  • USEPA - UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. (1995). Test methods for evaluating soil waste, physical/chemical methods SW-846. 3.ed. Washington, DC,. http://www.epa.gov/SW-846/3051a.pdf. Accessed 10 April 2008.

  • Van Raij, B., Cantarella, H., Quaggio, J. A., Ferreira, H. E., Lopes, A. S., & Bataglia, O. C. (1987). Análise química do solo para fins de fertilidade. Fundação Cargill: Campinas. 170p.

    Google Scholar 

  • Wang, S., & Mulligan, C. N. (2006). Natural attenuation processes for remediation of arsenic contaminated soils and groundwater. Journal of Hazardous Materials, 138, 459–470.

    Article  CAS  Google Scholar 

  • Wang, J., Zhao, F. J., Meharg, A. A., Raab, A., Feldmann, J., & McGrath, S. P. (2002). Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate and arsenic speciation. Plant Physiology, 130, 1552–1561.

    Article  CAS  Google Scholar 

  • Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., & Adriano, D. C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436, 309–323.

    Article  CAS  Google Scholar 

  • Wenzel, W. W., Brandstetter, A., Wutte, H., Lombi, E., Prohaska, T., Stingeder, G., et al. (2002). Arsenic in field-collected soil solution and extracts of contaminated soils and its implication to soil standards. Journal Plant Nutrition and Soil Science, 165, 221–228.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CNPq for providing scholarships to the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clistenes W. A. Nascimento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melo, É.E.C., Guilherme, L.R.G., Nascimento, C.W.A. et al. Availability and Accumulation of Arsenic in Oilseeds Grown in Contaminated Soils. Water Air Soil Pollut 223, 233–240 (2012). https://doi.org/10.1007/s11270-011-0853-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0853-2

Keywords

Navigation