Skip to main content

Advertisement

Log in

Root Distributions of Planted Boreal Mixedwood Species on Reclaimed Saline–Sodic Overburden

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Alberta’s oil sands are located in the boreal forest where surface mining requires reconstruction of these landscapes using waste saline and sodic overburden (SSOB) piles. The impact of these SSOB materials, however, on root development of planted boreal species is unknown. The objective of this study was to examine the effect of SSOB material on the root distributions of planted boreal species. Root distributions for planted mixedwood stands were measured using soil cores and compared with soil physical and chemical properties on three reclaimed sites. Soil pH ranged from 6.1 to 7.5 across all three reclaimed sites. Sodium adsorption ratio ranged from <30 in the SSOB at the youngest site to <4 at the oldest site while soil electrical conductivity ranged from <12 and <4 dS m−1 in the SSOB at the youngest and oldest site, respectively. Root length distributions were concentrated in the upper 30 cm of the soil profile and ranged from 0.96 to 7.99 cm cm−3. The roots were observed in the SSOB and accounted for 1.3% to 2.2% of the total root length in the profile. The root length density was also negatively correlated with Na and EC at all sites. The root distributions on these young reclaimed sites were similar to those from undisturbed boreal forest stands overlying saline soils, suggesting that root distributions on these reclaimed sites appear to be unaffected by the SSOB; however, further monitoring will be required as the stand matures to determine future impacts of the SSOB on forest productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews, J. A., Johnson, J. E., Torbert, J. L., Burger, J. A., & Kelting, D. L. (1998). Land reclamation: minesoil and site properties associated with early height growth of white pine. Journal of Environmental Quality, 27(1), 192–199.

    Article  CAS  Google Scholar 

  • Ares, A., & Peinemann, N. (1992). Fine-root distribution of coniferous plantations in relation to site in southern Buenos Aires, Argentina. Canadian Journal of Forest Research, 22(11), 1575–1582.

    Article  Google Scholar 

  • Baligar, V. C., Fageria, N. K., & Elrashidi, M. A. (1998). Toxicity and nutrient constraints on root growth. Proc. Am. Soc. Hortic. Sci. (ASHS) Annu. Conf., 94th, Salt Lake City, Utah, 24 July 1997. Hortscience, 33(6), 960–965.

    CAS  Google Scholar 

  • Bernstein, N., & Kafkafi, U. (2002). Root growth under salinity stress. In Y. Waisel et al. (Eds.), Plant roots: the hidden half (pp. 787–805). New York: Marcel Dekker Inc.

    Google Scholar 

  • Berntson, G. M. (1992). A computer program for characterizing root system branching patterns. Plant and Soil, 140(1), 145–149.

    Article  Google Scholar 

  • Brassard, B. W., Chen, H. Y. H., & Bergeron, Y. (2009). Influence of environmental variability on root dynamics in northern forests. Critical Reviews in Plant Sciences, 28(3), 179–197.

    Article  Google Scholar 

  • Canadell, J., Jackson, R. B., Ehleringer, J. R., Mooney, H. A., Sala, O. E., & Schulze, E. D. (1996). Maximum rooting depth of vegetation types at the global scale. Oceologia, 108(4), 583–595.

    Article  Google Scholar 

  • Capo, R. C., Stewart, B. W., & Chadwick, O. A. (1998). Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1–3), 197–225.

    Article  CAS  Google Scholar 

  • Carlstrom, M. G., Amendola, F. A., Shay, D. A., & Dollhopf, D. J. (1987). Sodium. In R. D. Williams & G. E. Schuman (Eds.), Reclaiming mine soils and overburden in the western United States: analytic parameters and procedures (pp. 75–108). Ankeny: Soil Conservation Society of America.

    Google Scholar 

  • Chen, S., Li, J., Fritz, E., Wang, S., & Hütterman, A. (2002). Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. Forest Ecology and Management, 168(1–3), 217–230.

    Article  Google Scholar 

  • Environment Canada (2005). National Climate Archive: Canadian Climate Normals 1971–2000, Fort McMurray, Alberta. http://climate.weatheroffice.ec.gc.ca/climate_normals/results_e.html. Accessed 11 Jan 2011.

  • Fung, L. E., Wang, S. S., Altman, A., & Hütterman, A. (1998). Effect of NaCl on growth, photosynthesis, ion and water relations of four poplar genotypes. Forest Ecology and Management, 107(1–3), 135–146.

    Article  Google Scholar 

  • Gale, M. R., & Grigal, D. F. (1987). Vertical root distributions of northern tree species in relation to successional status. Canadian Journal of Forest Research, 17(8), 829–834.

    Article  Google Scholar 

  • Greacen, E. L., & Sands, R. (1980). Compaction of forest soils. A review. Australian Journal of Soil Research, 18(2), 163.

    Article  Google Scholar 

  • Harris, G. A., & Campbell, G. S. (1989). Automated quantification of roots using a simple image analyzer. Agronomy Journal, 81(6), 935–938.

    Article  Google Scholar 

  • Henry, L. (2003). Henry’s handbook of soil and water. Saskatoon: Henry Perspectives.

    Google Scholar 

  • Hogg, T. J., & Henry, J. L. (1984). Comparison of 1:1 and 1:2 suspensions and extracts with the saturation extract in estimating salinity in Saskatchewan soils. Canadian Journal of Soil Science, 64(4), 699–704.

    Article  CAS  Google Scholar 

  • Holm, H.M. (1983). Soil salinity: a study in crop tolerances and cropping practices. Report 25M/3/83. Saskatchewan Agriculture, Plant Industry Branch.

  • Howat, D. (2000). Acceptable salinity, sodicity and pH values for boreal forest reclamation. Report # ESD/LM/00-2. Alberta Environment, Environmental Sciences Division, Edmonton Alberta.

  • Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., & Schulze, E. D. (1996). A global analysis of root distributions for terrestrial biomes. Oecologia, 108(3), 389–411.

    Article  Google Scholar 

  • Kelln, C.J., Barbour, S.L., Elshorbagy, A., Qualizza, C. (2006). Long-term performance of a reclamation cover: the evolution of hydraulic properties and hydrologic response. In G.A. Miller et al. (Ed.) Proc. Int. Conf. Unsaturated Soils, 4th, Carefree, AZ. 2–6 Apr. 2006. (pp. 813–824) American Society of Civil Engineers, Reston, VA

  • Kessler, S., Barbour, S. L., van Rees, K. C. J., & Dobchuk, B. S. (2010). Salinization of soil over saline–sodic overburden from the oil sands in Alberta. Canadian Journal of Soil Science, 90(4), 637–647.

    Article  Google Scholar 

  • Lapen, D. R., Topp, G. C., Edwards, M. E., Gregorich, E. G., & Curnoe, W. E. (2004). Combination cone penetration resistance/water content instrumentation to evaluate cone penetration-water content relationships in tillage research. Soil Tillage Research, 79(1), 51–62.

    Article  Google Scholar 

  • Leskiw, L. A. (2006). Land capability classification for forest ecosystems in the oil sands. Alberta: Paragon Soil and Environmental Consulting Inc.

    Google Scholar 

  • Lilles, E. B., Purdy, B. G., Chang, S. X., & Macdonald, S. E. (2010). Soil and groundwater characteristics of saline sites supporting boreal mixedwood forests in northern Alberta. Canadian Journal of Soil Science, 90, 1–14.

    Article  CAS  Google Scholar 

  • Maynard, D. G., Mallett, K. I., & Myrholm, C. L. (1997). Sodium carbonate inhibits emergence and growth of greenhouse-grown white spruce. Canadian Journal of Soil Science, 77(1), 99–105.

    Article  CAS  Google Scholar 

  • McCune, B., & Grace, J. B. (2002). Analysis of ecological communities. Gleneden Beach: MjM Software Design.

    Google Scholar 

  • McFee, W. W., Byrnes, W. R., & Stockton, J. G. (1981). Characteristics of coal mine overburden important to plant growth. Journal of Environmental Quality, 10(3), 300–308.

    Article  CAS  Google Scholar 

  • McSweeney, K., & Jansen, I. J. (1984). Soil structure and associated rooting behavior in minesoils. Soil Science Society of America Journal, 48(3), 607–612.

    Article  Google Scholar 

  • Meier, D.E., & Barbour, S.L. (2003). Monitoring of cover and watershed performance for soil covers placed over saline-sodic shale overburden from oilsands mining. In Alberta Soil Sci. Workshop Proc., 40th, Edmonton, AB. 18–20 February 2003. (pp. 194–207). Alberta Agriculture, Food and Rural Development, Edmonton.

  • Oliveira, M. R. G., van Noordwijk, M., Gaze, S. R., Brouwer, G., Bona, S., Mosca, G., et al. (2000). Auger sampling, ingrowth cores and pinboard methods. In A. L. Smit et al. (Eds.), Root methods: a handbook (pp. 175–210). Berlin: Springer.

    Google Scholar 

  • Pinkerton, A., & Simpson, J. R. (1979). The use of stable strontium as a chemical tracer for root penetration. Australian Journal of Agricultural Research, 30(2), 239–250.

    Article  CAS  Google Scholar 

  • Purdy, B. G., Macdonald, S. E., & Lieffers, V. J. (2005). Naturally saline boreal communities as models for reclamation of saline oil sand tailings. Restoration Ecology, 13(4), 667–677.

    Article  Google Scholar 

  • Renault, S. (2005). Response of red-osier dogwood (Cornus stolonifera) seedlings to sodium sulphate salinity: effects of supplemental calcium. Physiologia Plantarum, 123(1), 75–81.

    Article  CAS  Google Scholar 

  • Renault, S., Lait, C., Zwiazek, J. J., & MacKinnon, M. (1998). Effect of high salinity tailings waters produced from gypsum treatment of oil sands tailings on plants of the boreal forest. Environmental Pollution, 102(2–3), 177–184.

    Article  CAS  Google Scholar 

  • Renault, S., Paton, E., Nilsson, G., Zwiazek, J. J., & MacKinnon, M. D. (1999). Responses of boreal plants to high salinity oil sands tailings water. Journal of Environmental Quality, 28(6), 1957–1962.

    Article  CAS  Google Scholar 

  • Rhoades, J. D. (1996). Salinity: electrical conductivity and total dissolved solids. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3. Chemical methods (pp. 417–435). Madison: Soil Science Society of America.

    Google Scholar 

  • Richner, W., Liedgens, M., Burgi, H., Soldati, A., & Stamp, P. (2000). Root image analysis and interpretation. In A. L. Smit, A. G. Bengough, C. Engels, M. van Noordwijk, S. Pellerin, & S. C. van de Geijn (Eds.), Root methods: a handbook (pp. 305–341). Berlin: Springer.

    Google Scholar 

  • Sainju, U. M., & Good, R. E. (1993). Vertical root distribution in relation to soil properties in New Jersey Pinelands forests. Plant and Soil, 150(1), 87–97.

    Article  Google Scholar 

  • Singh, B. P., & Sainju, U. M. (1998). Soil physical and morphological properties and root growth. Proc. Am. Soc. Hortic. Sci. (ASHS) Annu. Conf., 94th, Salt Lake City, Utah, 24 July 1997. Hortscience, 33(6), 966–971.

    Google Scholar 

  • Sinnett, D., Morgan, G., Williams, M., & Hutchings, T. R. (2008). Soil penetration resistance and tree root development. Soil Use and Management, 24(3), 273–280.

    Article  Google Scholar 

  • Staples, T. E., & Van Rees, K. C. J. (2001). Wood/sludge ash effects on white spruce seedling growth. Canadian Journal of Soil Science, 81(1), 85–92.

    Article  CAS  Google Scholar 

  • Stone, E. L., & Kalisz, P. J. (1991). On the maximum extent of tree roots. Forest Ecology and Management, 46(1–2), 59–102.

    Article  Google Scholar 

  • Strong, W. L., & La Roi, G. H. (1985). Root density—soil relationships in selected boreal forests of central Alberta, Canada. Forest Ecology and Management, 12(3–4), 233–251.

    Article  Google Scholar 

  • Strong, W. L., & La Roi, G. H. (1983). Root-system morphology of common boreal forest trees in Alberta, Canada. Canadian Journal of Forest Research, 13(6), 1164–1173.

    Article  Google Scholar 

  • Thomas, G. W. (1996). Soil pH and soil acidity. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3. Chemical methods (pp. 475–490). Madison: Soil Science Society of America.

    Google Scholar 

  • Thompson, P. J., Jansen, I. J., & Hooks, C. L. (1987). Penetrometer resistance and bulk density as parameters for predicting root system performance in mine soils. Soil Science Society of America Journal, 51(5), 1288–1293.

    Article  Google Scholar 

  • Tucker, G. B., Berg, W. A., & Gentz, D. H. (1987). pH. In R. D. Williams & G. E. Schuman (Eds.), Reclaiming mine soils and overburden in the western United States: analytic parameters and procedures (pp. 3–26). Ankeny: Soil Conservation Society of America.

    Google Scholar 

  • Van Rees, K. C. J., & Comerford, N. B. (1986). Vertical root distribution and strontium uptake of a slash pine stand on a Florida Spodosol. Soil Science Society of America Journal, 50(4), 1042–1046.

    Article  Google Scholar 

  • Varian. (1989). Analytical methods, flame atomic absorption spectrometry. Publication No. 85-100009-00. Mulgrave: Varian Australia Pty Ltd.

    Google Scholar 

  • Yuan, Z. Y., & Chen, H. Y. H. (2010). Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Critical Reviews in Plant Sciences, 29(4), 204–221.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research project could not have been possible without funding from Syncrude Canada Ltd. and the Natural Sciences and Engineering Research Council of Canada. The authors would like to thank Doug Jackson, Cory Fatteicher, Barry Goetz, Sophie Kessler and Clara Qualizza for their assistance with the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken C. J. Van Rees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazorko, H., Van Rees, K.C.J. Root Distributions of Planted Boreal Mixedwood Species on Reclaimed Saline–Sodic Overburden. Water Air Soil Pollut 223, 215–231 (2012). https://doi.org/10.1007/s11270-011-0852-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0852-3

Keywords

Navigation