Water, Air, & Soil Pollution

, Volume 223, Issue 1, pp 135–144 | Cite as

Influence of Soil Type and Physical–Chemical Properties on Uranium Sorption and Bioavailability

  • Mirjana StojanovićEmail author
  • Dragi Stevanović
  • Jelena Milojković
  • Marija L. Mihajlović
  • Zorica Lopičić
  • Tatjana Šoštarić


This work was undertaken to study the influence of soil type and its physical and chemical properties on uranium sorption and bioavailability, in order to reduce the uncertainty associated with this parameter in risk assessment models and safe food production. The tests were conducted on three types of Serbian soils: alluvium, chernozem, and gajnjaca, from which 67 samples were taken. Dominant factors of uranium mobilisation: the specific content of total/available form of uranium and phosphorus, the degree of acidity (pHKCl), and humus content and their correlation, were analysed. Content of available uranium form, according to the type of soil decreases in the following order: gajnjaca > alluvium > chernozem. It was found the medium correlation between pH values and available content of uranium in chernozem and gajnjaca, statistically significant at the level of significance of 99% and the alluvium at the level of significance of 95%. Correlation coefficients in all cases were negative, indicating that the reduction in pH increases the mobility of uranium and thus its availability for the adoption of the plants. Soil pH was the only dominant factor that significantly controlled the uranium value with no further significant contribution of other soil parameters.


Uranium Soil type Physical–chemical properties Sorption Availability Correlation coefficients 



This research is part of a realization of project TR31003 that is supported and funded by the Ministry of Science and Technological Development Republic of Serbia.


  1. Duquène, L., Vandenhove, H., Tack, F., Van der Avoort, E., Wannijn, J., & Van Hees, M. (2006). Phytoavailability of uranium: influence of plant species and soil characteristics. In B. J. Merkel & A. Hasche-Berger (Eds.), Uranium in the environment. Berlin: Springer.Google Scholar
  2. Ebbs, S. D., Brady, J. D., & Kochian, V. L. (1998). Role of uranium speciation in the uptake and translocation of uranium by plants. Journal of Experimental Botany, 49(324), 1183–1190.CrossRefGoogle Scholar
  3. Echevarria, G., Sheppard, I. M., & Morel, J. L. (2001). Effect of pH on the sorption of uranium in soils. Journal of Environmental Radioactivity, 53(2), 257–264.CrossRefGoogle Scholar
  4. Egner, H., Riehm, H., & Domingo, W. R. (1960). Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nahrstoffzustandes der Boden, II: Chemische Extractionsmetoden zu Phosphorund Kaliumbestimmung. Kungliga Lantbruks-hügskolans Annaler, 26, 199–215.Google Scholar
  5. Gavrilescu, M., Pavel, L. V., & Cretescu, I. (2009). Characterization and remediation of soils contaminated with uranium. Journal of Hazardous Materials, 163, 475–510.CrossRefGoogle Scholar
  6. Harmsten, K. F., & De Haan, A. M. (1980). Occurrence and behavior of uranium and thorium in soil and water. Netherlands Journal of Agricultural Science, 28, 40–62.Google Scholar
  7. Jakovljević, M., & Pantović, M. (1991). Hemija zemljišta i voda. Naučna knjiga: Beograd.Google Scholar
  8. Jelenković, R. (1991). Uranium mineralization in the Sumadija Metallogenic District (Serbia): genetic and morphostructural types. Belgrade: Republic Fund for Geological Investigation.Google Scholar
  9. Jerden, L. J., & Sinha, K. A. (2003). Phosphate based immobilization of uranium in an oxidizing bedrock aquifer. Applied Geochemistry, 18, 823–843.CrossRefGoogle Scholar
  10. Jones, L. R. (1992). Uranium and phosphorous content in Morrow plot soil over 82 years. Communications in Soil Science and Plant Analysis, 23, 67–73.CrossRefGoogle Scholar
  11. Kratz, S., & Schnug, E. (2006). Rock phosphate and P-fertilisers as sources of P contamination in agricultural soils. In B. J. Merkel & A. Hasche-Berger (Eds.), Uranium in the environment (pp. 57–68). Berlin: Springer.CrossRefGoogle Scholar
  12. Lamas, M.D.C. (2005). Factor affecting the availability of uranium in soils. Landbauforschung Völkenrode Sonderheft 278, Germany, Braunschweig.Google Scholar
  13. Laroche, L., Henner, P., Camilleri, V., Morello, M., & Garnier-Laplace, J. (2005). Root uptake of uranium by a higher plant model (Phaseolus vulgaris)—bioavailability from soil solution. Radioprotection, 40(1), 33–39.CrossRefGoogle Scholar
  14. McBride, M. B., & Spiers, G. A. (2001). Trace element content of selected fertilizers and dairy manures as determined by ICP-MS. Communications in Soil Science and Plant, 32(1–2), 139–156.CrossRefGoogle Scholar
  15. NRC. (1999). Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive Materials, National Research Council. Washington: National Academy Press.Google Scholar
  16. Petrović, B., & Mitrović, R. (1991). Radijaciona higijena u biotehnologiji. Naučna knjiga: Beograd.Google Scholar
  17. Rajković, B. M., & Đorđević, A. (2006). Possibility of serbian soil contamination by depleted uranium after NATO bombing 1999. In M. Stojanović (Ed.), Radionuclide contamination of Serbian soil and remediation possibility (pp. 167–219). Belgrade: ITNMS.Google Scholar
  18. Rivas, M.D.C. (2005). Interactions between soil uranium contamination and fertilisation with N, P, and S on the uranium content and uptake of corn, sunflower and bean, and soil microbiological parameters, Landbauforschung Völkenrode Sonderheft 287, Germany, Braunschweig.Google Scholar
  19. Sarić, M. R., Stojanović, M., & Babić, M. (1995). Uranium in plant species grown on Natural barren soil. Journal of Plant Nutrition, 18(7), 1509–1518.CrossRefGoogle Scholar
  20. Sheppard, S. C., & Evenden, W. G. (1992). Bioavailability indices for uranium: effect of concentration in eleven soils. Archives of Environmental Contamination and Toxicology, 23, 117–124.CrossRefGoogle Scholar
  21. Stevanović, D., Kresojević, M., Stojanović, M. & Grubišić, M. (2009). Actual assortment of mineral fertilizers in Serbia and their quality and problems of applications. In: Proceedings of XXIIIst Conference of Agronomist, Veterinarians and Technologiest, Belgrade, pp 169–177.Google Scholar
  22. Stojanović, M. (2006). Radionuclide contamination of Serbian soil and remediation possibility. Belgrade: Institute for Technology of Nuclear and Other Minerals Raw Materials.Google Scholar
  23. Stojanović, M. & Martinović, Z. (1993). A review of analytical methods for determination of uranium, in: Sarić M. (Eds.), The effects of the application of phosphorus fertilisers on the contamination by uranium. In: Proceedings of the Scientific Meeting, Vol. 5, Serbian Academy of Science and Arts, (pp. 19–29) Belgrade.Google Scholar
  24. Stojanović, M., Mrdaković-Popić, J., Stevanović, D., & Lj, M. (2006). Phosphorus Fertilizers as Source Of Uranium In Serbian Soils. Agronomy on Sustainable Development, 26, 179–183.CrossRefGoogle Scholar
  25. Stojanović, M., Stevanović, D., Iles, D., Grubišić, M., & Milojković, J. (2009). The effect of the uranium content in the tailings on some cultivated plants. Water, Air and Soil Pollution, 200, 101–108.CrossRefGoogle Scholar
  26. Stojanović, M., Stevanović, D., Iles, D., Grubišić, M., & Milojković, J. (2010). Phytotoxic effect of uranium on the growing up and development plant of corn. Water, Air and Soil Pollution, 209(1–4), 401–410.CrossRefGoogle Scholar
  27. Tandon, H. L. S., Cescas, M. P., & Tyner, E. H. (1968). An acid-free vanadate-molybdate reagent for the determination of total phosphorus in soils. Soil Science Society of American Protection, 32, 48–51.CrossRefGoogle Scholar
  28. Tessier, A., Campbell, M. P., & Bisson, M. (1979). Sequential extraction procedure for speciation of particulate trace metals. Analytical Chemistry, 54, 844–851.CrossRefGoogle Scholar
  29. Tunney, H., Stojanovi, M., Mrdakovi-Popi, J., McGrath, D., & Zhang, C. (2009). Relationship of soil phosphorus with uranium in grassland mineral soils in Ireland using soils from a long-term phosphorus experiment and a National soil database. Journal of Plant Nutrition and Soil Science, 172(3), 346–352.CrossRefGoogle Scholar
  30. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2000) Report to the general assembly. Annex B: exposures from natural radiation sources, NewYork, USA.Google Scholar
  31. Vandenhove, H., Van Hees, M., Wouters, K., & Wannijn, J. (2007). Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration. Environmental Pollution, 145(2), 587–595.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Mirjana Stojanović
    • 1
    Email author
  • Dragi Stevanović
    • 2
  • Jelena Milojković
    • 1
  • Marija L. Mihajlović
    • 1
  • Zorica Lopičić
    • 1
  • Tatjana Šoštarić
    • 1
  1. 1.Institute for Technology of Nuclear and other Mineral Raw MaterialsBelgradeSerbia
  2. 2.Faculty of AgricultureZemunSerbia

Personalised recommendations