Skip to main content
Log in

The Effects of Soil Amendments on the Growth of Atriplex halimus and Bituminaria bituminosa in Heavy Metal-Contaminated Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In Southern Spain, as in other semi-arid zones, plants used for the phytoremediation of heavy metal-contaminated sites must be able to withstand not only the challenging soil conditions but also seasonal drought and high temperatures. A pot assay was carried out to determine the ability of soil amendments to promote the survival and growth of the seedlings of two native species, Atriplex halimus L. (Amaranthaceae) and Bituminaria bituminosa (L.) C.H. Stirton (Fabaceae), in two heavy metal-contaminated soils, one of which also had a high level of arsenic (As). Restriction of A. halimus shoot growth in the non-amended soils appeared to be due to deficiency of nitrogen, phosphorus (P) and potassium (K) and in the more highly contaminated soil to lead (Pb) toxicity. Shoot biomass of A. halimus in the more highly contaminated soil was increased significantly by compost addition, due to increased uptake of K and P and decreased tissue Pb. The lack of effect of compost on B. bituminosa growth in this soil, despite a large increase in tissue K, may have been due to elevated tissue levels of As and Pb and the high soil salinity. The combination of A. halimus and compost addition seems appropriate for the phytostabilisation of contaminated semi-arid sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Balsberg Påhlsson, A. M. (1989). Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water, Air, and Soil Pollution, 47, 287–319.

    Article  Google Scholar 

  • Bernal, M. P., Clemente, R., & Walker, D. J. (2007). The role of organic amendments in the bioremediation of heavy metal-polluted soils. In R. B. Gore (Ed.), Environmental Research at the Leading Edge (pp. 1–57). New York: Nova.

    Google Scholar 

  • Bernal, M. P., Clemente, R., & Walker, D. J. (2009). Interactions of heavy metals with soil organic matter in relation to phytoremediation. In J. P. Navarro-Aviño (Ed.), Phytoremediation: The Green Salvation of the World (pp. 109–129). Trivandrum: Research Signpost.

    Google Scholar 

  • Bernal, M. P., Navarro, A. F., Sánchez-Monedero, M. A., Roig, A., & Cegarra, J. (1998). Influence of sewage sludge compost stability and maturity on carbon and nitrogen mineralization in soil. Soil Biology and Biochemistry, 30, 305–313.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L. Q., Chen, M., Singh, S. P., & Harris, W. G. (2002). Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. Environmental Science & Technology, 36, 5296–5304. doi:10.1021/es020697j.

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina, A. A., Burló, F., Valero, D., López, E., Martínez-Romero, D., & Martínez-Sánchez, F. (1999). Arsenic toxicity and accumulation in turnip as affected by arsenic chemical speciation. Journal of Agricultural and Food Chemistry, 47, 2288–2294.

    Article  CAS  Google Scholar 

  • Cegarra, J., Alburquerque, J. A., Gonzálvez, J., Tortosa, G., & Chaw, D. (2006). Effects of the forced ventilation on composting of a solid olive-mill by-product (“alperujo”) managed by mechanical turning. Waste Management, 26, 1377–1383. doi:10.1016/j.wasman.2005.11.021DOI:dx.doi.org.

    Article  CAS  Google Scholar 

  • Chaney, R. L. (1989). Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food chains. In B. Bar-Yosef, N. J. Barrow, & J. Goldshmid (Eds.), Inorganic contaminants in the vadose zone (pp. 140–158). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Clemente, R., Walker, D. J., & Bernal, M. P. (2005). Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): The effect of soil amendments. Environmental Pollution, 138, 46–58. doi:10.1016/j.envpol.2005.02.019.

    Article  CAS  Google Scholar 

  • Council of the European Communities. (1986). Directive of 12 of June on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Official Journal of the European Community, L181, 6–12.

    Google Scholar 

  • Cox, M.C. (1995). Arsenic characterization in soil and arsenic effects on canola growth. Ph.D. dissertation. Baton Rouge, Louisiana: Louisiana State University.

  • Davis, R. D., & Beckett, P. H. T. (1978). Upper critical levels of toxic elements in plants. II. Critical levels of copper in young barley, wheat, rape, lettuce and ryegrass, and of nickel and zinc in young barley and ryegrass. New Phytologist, 80, 23–32.

    Article  CAS  Google Scholar 

  • de la Fuente, C., Clemente, R., Martínez, J., & Bernal, M. P. (2010). Optimization of pig slurry application to heavy metal polluted soils monitoring nitrification processes. Chemosphere, 81, 603–610. doi:10.1016/j.chemosphere.2010.08.026.

    Article  Google Scholar 

  • Fitz, W. J., & Wenzel, W. W. (2002). Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. Journal of Biotechnology, 99, 259–278. doi:10.1016/s0168-1656(02)00218-3.

    Article  CAS  Google Scholar 

  • Hegazi, E. M., Wangberg, J. K., Goodin, J. R., & Northington, D. K. (1980). Field observations on arthropods associated with Atriplex halimus in Egypt. Journal of Arid Environments, 3, 305–308.

    Google Scholar 

  • Jeliazkova, E., Craker, L. E., & Xing, B. S. (2003). Seed germination of anise, caraway, and fennel in heavy metal contaminated solutions. Journal of Herbs, Spices & Medicinal Plants, 10, 83–93. doi:10.1300/J044v10n03_09.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC.

    Google Scholar 

  • Lefèvre, I., Marchal G., Meerts, P., Correal, E., & Lutts, S. (2009). Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environmental and Experimental Botany, 65, 142–152. doi:10.1016/j.envexpbot.2008.07.005.

    Article  Google Scholar 

  • Lutts, S., Lefèvre, I., Delpèrèe, C., Kivits, S., Deschamps, C., Robledo, A., et al. (2004). Heavy metal accumulation by the halophyte species Mediterranean saltbush. Journal of Environmental Quality, 33, 1271–1279.

    Article  CAS  Google Scholar 

  • Manousaki, E., & Kalogerakis, N. (2009). Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environmental Science and Pollution Research, 16, 844–854. doi:10.1007/s11356-009-0224-3.

    Article  CAS  Google Scholar 

  • Marqués, M. J., Jiménez, L., Pérez-Rodríguez, R., García-Ormaechea, S., & Bienes, R. (2005). Reducing water erosion in a gypsic soil by combined use of organic amendment and shrub revegetation. Land Degradation and Development, 16, 339–350. doi:10.1002/ldr.658.

    Article  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London: Academic.

    Google Scholar 

  • McLaughlin, M. J., Zarcinas, B. A., Stevens, D. P., & Cook, N. (2000). Soil testing for heavy metals. Communications in Soil Science and Plant Analysis, 31, 1661–1700.

    Article  CAS  Google Scholar 

  • Mendez, M. O., Glenn, E. P., & Maier, R. (2007). Phytostabilization potential of quailbush for mine tailings: growth, metal accumulation, and microbial community changes. Journal of Environmental Quality, 36, 245–253. doi:10.2134/jeq2006.0197.

    Article  CAS  Google Scholar 

  • Mendez, M. O., & Maier, R. (2008). Phytostabilization of mine tailings in arid and semiarid environments – an emerging remediation technology. Environmental Health Perspectives, 116, 278–283. doi:10.1289/ehp.10608.

    Article  CAS  Google Scholar 

  • Pang, J., Tibbett, M., Denton, M. D., Lambers, H., Siddique, K. H. M., Bolland, M. D. A., et al. (2010). Variation in seedling growth of 11 perennial legumes in response to phosphorus supply. Plant and Soil, 328, 133–143. doi:10.1007/s11104-009-0088-9.

    Article  CAS  Google Scholar 

  • Probiogas project. Retrieved April 27, 2011, from http://www.probiogas.es.

  • Ramos, J., López, M. J., & Benlloch, M. (2004). Effect of NaCl and KCl salts on the growth and solute accumulation of the halophyte Atriplex nummularia. Plant and Soil, 259, 163–168.

    Article  CAS  Google Scholar 

  • Sardans, J., Peñuelas, J., Prieto, P., & Estiarte, M. (2008). Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a Mediterranean shrubland. Plant and Soil, 306, 261–271. doi:10.1007/s11104-008-9583-7.

    Article  CAS  Google Scholar 

  • Soil Survey Staff. (2010). Keys to Soil Taxonomy (11th ed.). Washington, D.C.: USDA-Natural Resources Conservation Service.

    Google Scholar 

  • Walker, D. J., Bernal, M. P., & Correal, E. (2007). The influence of heavy metals and mineral nutrient supply on Bituminaria bituminosa. Water, Air, and Soil Pollution, 184, 335–345. doi:10.1007/s11270-007-9422-0.

    Article  CAS  Google Scholar 

  • Walker, D. J., Clemente, R., & Bernal, M. P. (2004). Contrasting effects of compost and manure on the growth and uptake of heavy metals by Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere, 57, 215–224. doi:10.1016/j.chemosphere.2004.05.020.

    Article  CAS  Google Scholar 

  • Walker, D. J., Clemente, R., Roig, A., & Bernal, M. P. (2003). The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environmental Pollution, 122, 303–312.

    Article  CAS  Google Scholar 

  • Walker, D. J., Moñino, I., & Correal, E. (2006). Genome size in Bituminaria bituminosa (L.) C.H. Stirton (Fabaceae) populations: separation of “true” differences from environmental effects on DNA determination. Environmental and Experimental Botany, 55, 258–265. doi:10.1016/j.envexpbot.2004.11.005.

    Article  CAS  Google Scholar 

  • Walker, D. J., Moñino, I., González, E., Frayssinet, N., & Correal, E. (2005). Determination of ploidy and nuclear DNA content in populations of Atriplex halimus (Chenopodiaceae). Botanical Journal of the Linnean Society, 147, 441–448.

    Article  Google Scholar 

  • Walsh, L. M., Sumner, M. E., & Keeley, D. R. (1977). Occurrence and distribution of arsenic in soils and plants. Environmental Health Perspectives, 19, 67–71.

    Article  CAS  Google Scholar 

  • Wang, X. F., & Zhou, Q. X. (2005). Ecotoxicological effects of cadmium on three ornamental plants. Chemosphere, 60, 16–21. doi:10.1016/j.chemosphere.2004.12.031.

    Article  CAS  Google Scholar 

  • Wild, A. (1988). Russell´s soil conditions and plant growth (11th ed.). London: Longman.

    Google Scholar 

Download references

Acknowledgements

We thank Roberto Pérez Alcaraz-Pérez (IMIDA) for technical assistance and Tania Pardo (CEBAS-CSIC, Murcia, Spain) for analysis of the compost and pig slurry. This work was funded by project CTM2007-66401-C02-01 of the Ministerio de Ciencia e Innovación (Spain). Half of David Walker’s salary is paid by the European Union via European Social Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Fernández, D., Walker, D.J. The Effects of Soil Amendments on the Growth of Atriplex halimus and Bituminaria bituminosa in Heavy Metal-Contaminated Soils. Water Air Soil Pollut 223, 63–72 (2012). https://doi.org/10.1007/s11270-011-0839-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0839-0

Keywords

Navigation