Water, Air, & Soil Pollution

, Volume 222, Issue 1–4, pp 403–419 | Cite as

Associations Between Dioxins/Furans and Dioxin-Like PCBs in Estuarine Sediment and Blue Crab

  • Johan Liebens
  • Carl J. Mohrherr
  • Natalie K. Karouna-Renier
  • Richard A. Snyder
  • K. Ranga Rao
Article

Abstract

The objective of the present study was to evaluate the relationships between the quantity, toxicity, and compositional profile of dioxin/furan compounds (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in estuarine sediment and in the blue crab (Callinectes sapidus). Sediment and blue crab samples were collected in three small urban estuaries that are in relatively close proximity to each other. Results show that differences between PCDD/F and DL-PCB mass concentrations and total toxic equivalents (TEQ) toxicity in sediments of the three estuaries are reflected in those of the blue crab. TEQs are higher in the hepatopancreas of the crabs than in the sediment, but the concentration factor is inversely proportional to the TEQ in the sediments. Congener profiles in the crabs are systematically different from those in the sediments, and the difference is more pronounced for PCDD/Fs than for DL-PCBs, possibly due to differences in metabolization rates. Compared with sediment profiles, more lesser-chlorinated PCDD/Fs that have higher TEFs accumulate in crab hepatopancreas. This selective bioaccumulation of PCDD/Fs results in a TEQ augmentation in crab hepatopancreas compared with sediments. The bioaccumulation in the blue crab is also selective for PCDD/Fs over DL-PCBs.

Keywords

Dioxin/furan PCB TEQ Sediment pollution Organic pollutants Bioaccumulation 

References

  1. ATSDR (1998). Toxicological profile for chlorinated dibenzo-p-dioxins. Atlanta: US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry.Google Scholar
  2. ATSDR (2000). Toxicological profile for polychlorinated biphenyls (PCBs). Atlanta: US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry.Google Scholar
  3. Birch, G., Harrington, C., Symons, R., & Hunt, J. (2007). The source and distribution of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofurans in sediments of Port Jackson, Australia. Marine Pollution Bulletin, 54, 295–308.CrossRefGoogle Scholar
  4. Bodin, N., Abarnou, A., Fraisse, D., Defour, S., Loizeau, V., Le Guellec, A.-M., et al. (2007). PCB, PCDD/F and PBDE levels and profiles in crustaceans from the coastal waters of Brittany and Normandy (France). Marine Pollution Bulletin, 54, 657–668.CrossRefGoogle Scholar
  5. Bonn, B. (1998). Polychlorinated dibenzo-p-dioxin and dibenzofuran concentration profiles in sediment and fish tissue of the Willamette Basin, Oregon. Environmental Science and Technology, 32(6), 729–735.CrossRefGoogle Scholar
  6. Bright, D., Dushenko, W., Grundu, S., & Reimer, K. (1995). Effects of local and distant contaminant sources: polychlorinated biphenyls and other organochlorines in bottom-dwelling animals from an Arctic estuary. Science of the Total Environment, 160–161, 265–283.CrossRefGoogle Scholar
  7. Bunger, M., Moran, S., Glover, E., Thomae, T., Lahvis, G., Lin, B., et al. (2003). Resistance to 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity and abnormal liver development in mice carrying a mutation in the nuclear localization sequence of the aryl hydrocarbon receptor. The Journal of Biological Chemistry, 278(20), 17767–17774.CrossRefGoogle Scholar
  8. Dean, K., Suarez, M., Rifai, H., Palachek, R., & Koenig, L. (2009). Bioaccumulation of polychlorinated dibenzodioxins and dibenzofurans in catfish and crabs along an estuarine salinity and contamination gradient. Environmental Toxicology and Chemistry, 28, 2307–2317.CrossRefGoogle Scholar
  9. Foster, E., Drake, D., & Farlow, R. (1999). Polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran congener profiles in fish, crayfish, and sediment collected near a wood treating facility and a bleached kraft pulp mill. Bulletin of Environmental Contamination and Toxicology, 62, 239–246.CrossRefGoogle Scholar
  10. Frame, G., Cochran, J., & Bowadt, S. (1996). Complete PCB congener distributions for 17 Aroclor mixtures determined by 3 HRGC systems optimized for comprehensive, quantitative, congener-specific analysis. Journal of High Resolution Chromatography, 19, 657–668.CrossRefGoogle Scholar
  11. Gobas, F. (1990). Bioaccumulation of some polychlorinated dibenzo-p-dioxins and octachlorodibenzofuran in the guppy (Poecilia reticulata). Chemosphere, 20(5), 495–512.CrossRefGoogle Scholar
  12. Howell, N., Suarez, M., Rifai, H., & Koenig, L. (2008). Concentrations of polychlorinated biphenyls (PCBs) in water, sediment, and aquatic biota in the Houston Ship Channel, Texas. Chemosphere, 70, 593–606.CrossRefGoogle Scholar
  13. Iannuzzi, T., Armstrong, T., Thelen, J., & Ludwig, D. (2004). Chemical contamination of aquatic organisms from an urbanized river in the New York/New Jersey Harbor estuary. Human and Ecological Risk Assessment, 10, 389–413.CrossRefGoogle Scholar
  14. IARC (1997). Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans. IARC monographs on the evaluation of carcinogenic risks to humans. V. 69. Lyon, France. 666 pp. Available at: http://monographs.iarc.fr/ENG/Classification/crthgr01.php
  15. Jimenez, B., Hernandez, L., Gonzalez, M., Eljarrat, E., Rivera, J., & Fossi, M. (1998). Congener specific analysis of polychlorinated dibenzo-p-dioxins and dibenzofurans in crabs and sediments from the Venice and Orbetello Lagoons, Italy. Environmental Science & Technology, 32(24), 3853–3861.CrossRefGoogle Scholar
  16. Johnson, G., Hansen, L., Hamilton, M., Fowler, B., & Hermanson, M. (2007). PCB, PCDD and PCDF congener profiles in two types of Aroclor 1254. Environmental Toxicology and Pharmacology, 25(2), 156–163.CrossRefGoogle Scholar
  17. Karouna-Renier, N., Snyder, R., Allison, J., Wagner, M., & Rao, K. R. (2007). Accumulation of organic and inorganic contaminants in shellfish collected in estuarine waters near Pensacola, Florida: contamination profiles and risks to human consumers. Environmental Pollution, 145, 474–488.CrossRefGoogle Scholar
  18. Lake, J. L., McKinney, R., Lake, C. A., Osterman, F. A., & Heltsche, J. (1995). Comparison of patterns of polychlorinated biphenyl congeners in water, sediment, and indigenous organisms from New Bedford Harbor, Massachusetts. Archives of Environmental Contamination and Toxicology, 29, 207–220.Google Scholar
  19. Landi, M., Consonni, D., Patterson, D., Jr., Needham, L., Lucier, G., Brambilla, P., et al. (1998). 2,3,7,8-Tetrachlorodibenzo-p-dioxin plasma levels in Seveso 20 years after the accident. Environmental Health Perspectives, 106(5), 273–277.CrossRefGoogle Scholar
  20. Laughlin, R. (1982). Feeding habits of the blue crab, Callinectes sapidus Rathbun, in the Apalachicola Estuary, Florida. Bulletin of Marine Science, 32(4), 807–822.Google Scholar
  21. Lewis, M., Quarles, R. L., Dantin, D. D., & Moore, J. C. (2004). Evaluation of a Florida coastal golf complex as a local and watershed source of bioavailable contaminants. Marine Pollution Bulletin, 48, 254–262.CrossRefGoogle Scholar
  22. Liebens, J., Mohrherr, C., Rao, K. R., & Houser, C. (2006). Pollution in an urban bayou: magnitude, spatial distribution and origin. Water, Air, & Soil Pollution, 174, 235–263.CrossRefGoogle Scholar
  23. Liebens, J., Mohrherr, C., & Rao, K. R. (2007). Sediment pollution pathways in a small industrialized estuary: Bayou Chico, Pensacola, Florida. Marine Pollution Bulletin, 54, 1529–1539.CrossRefGoogle Scholar
  24. Lundebye, A., Berntssen, M., Lie, O., Ritchie, G., Isosaari, P., Kiviranta, H., et al. (2004). Dietary uptake of dioxins (PCDD/PCDFs) and dioxin-like PCBs in Atlantic salmon (Salmo salar). Aquaculture Nutrition, 10, 199–207.CrossRefGoogle Scholar
  25. Micheletti, C., Critto, A., & Marcomini, A. (2007). Assessment of ecological risk from bioaccumulation of PCDD/Fs and dioxin-like PCBs in a coastal lagoon. Environment International, 33(1), 45–55.CrossRefGoogle Scholar
  26. Micheletti, C., Lovato, T., Critto, A., Pastres, R., & Marcomini, A. (2008). Spatially distributed ecological risk for fish of a coastal food web exposed to dioxins. Environmental Toxicology and Chemistry, 27(5), 1217–1225.CrossRefGoogle Scholar
  27. Mohrherr, C., Liebens, J., and Rao, K.R. (2006) Sediment and water pollution in Bayou Chico, Pensacola, FL. University of West Florida, Center for Environmental Diagnostics and Bioremediation, p 183.Google Scholar
  28. Peré-Trepat, E., Olivella, L., Ginebreda, A., Caixach, J., & Tauler, R. (2006). Chemometrics modelling of organic contaminants in fish and sediment river samples. Science of the Total Environment, 71, 223–237.CrossRefGoogle Scholar
  29. Rachdawong, P., & Christensen, E. R. (1997). Determination of PCB sources by principal component method with nonnegative constraints. Environmental Science & Technology, 31, 2686–2691.CrossRefGoogle Scholar
  30. Rappe, C. (1996). Sources and environmental concentrations of dioxins and related compounds. Pure and Applied Chemistry, 68(9), 1781–1789.CrossRefGoogle Scholar
  31. Ruus, A., Berge, J., Bergstad, O., Knutsen, J., & Hylland, K. (2006). Disposition of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in two Norwegian epibenthic marine food webs. Chemosphere, 62(11), 1856–1868.CrossRefGoogle Scholar
  32. Sakurai, T., Kim, J., Suzuki, N., & Nakanishi, J. (1996). Polychlorinated dibenzo-p-dioxins and dibenzofurans in sediment, soil, fish and shrimp from a Japanese freshwater lake area. Chemosphere, 33(10), 2007–2020.CrossRefGoogle Scholar
  33. Sakurai, T., Kim, J., Suzuki, N., Matsuo, T., Li, D. Q., Yao, Y., et al. (2000). Polychlorinated dibenzo-p-dioxins and dibenzofurans in sediment, soil, fish, shellfish and crab samples from Tokyo Bay area, Japan. Chemosphere., 40, 627–640.CrossRefGoogle Scholar
  34. Sinkkonen, S., & Paasivirta, J. (2000). Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling. Chemosphere, 40(9–11), 943–949.CrossRefGoogle Scholar
  35. Stevens, E., & Bradfield, C. (2008). Immunology: T cells hang in the balance. Nature, 453, 46–47.CrossRefGoogle Scholar
  36. Suarez, M., Rifai, H., Palachek, R., Dean, K., & Koenig, L. (2005). Polychlorinated dibenzo-p-dioxins and dibenzofurans in Houston Ship Channel tissue and sediment. Environmental Engineering Science, 22, 891–906.CrossRefGoogle Scholar
  37. US EPA (2003). Exposure and human health reassessment of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds: Part III: integrated summary and risk characterization for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Washington: US EPAGoogle Scholar
  38. US EPA (2009). Wastes—hazardous waste—test methods. SW-846 On-line. Available at: http://www.epa.gov/wastes/hazard/testmethods/sw846/online/index.htm#table
  39. US EPA (2010). Persistent bioaccumulative and toxic (PBT) chemical program. Available at: http://www.epa.gov/pbt/pubs/dioxins.htm
  40. van den Berg, M., Birnbaum, L., Denison, M., De Vito, M., Farland, W., & Feeley, M. (2006). The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences, 93(2), 223–241.CrossRefGoogle Scholar
  41. Van der Linde, A., Hendricks, A. J., & Sijm, D. (2001). Estimating biotransformation rate constants of organic chemicals from modeled and measured elimination rates. Chemosphere, 44, 423–435.CrossRefGoogle Scholar
  42. Weber, R., Gaus, C., Tysklind, M., Johnston, P., Forter, M., Hollert, H., et al. (2008). Dioxin- and POP-contaminated sites—contemporary and future relevance and challenges. Environmental Science and Pollution Research, 15, 363–393.CrossRefGoogle Scholar
  43. Wenning, R. J., Paustenbach, D. J., Harris, M. A., & Bedbury, H. (1993). Principal components analysis of potential sources of polychlorinated dibenzo-p-dioxin and dibenzofuran residues in surficial sediments from Newark Bay, New Jersey. Archives of Environmental Contamination and Toxicology, 24, 271–289.CrossRefGoogle Scholar
  44. Wittich, R.-M. (1998). Degradation of dioxin-like compounds by microorganisms. Applied Microbiology and Biotechnology, 49, 489–499.CrossRefGoogle Scholar
  45. Ylitalo, G., Buzitis, J., & Krahn, M. (1999). Analysis of tissues of eight marine species from Atlantic and Pacific coasts for dioxin-like chlorobiphenyls (CBs) and total CBs. Archives of Environmental Contamination and Toxicology, 37, 205–219.CrossRefGoogle Scholar
  46. Yunker, M. B., & Cretney, W. J. (2000). Bioavailability of chlorinated dibenzo-p -dioxins and dibenzofurans to dungeness crab (Cancer magister) at marine pulp mill sites in British Columbia, Canada. Environmental Toxicology & Chemistry, 19, 2997–3011.Google Scholar
  47. Yunker, M. B., Cretney, W. J., & Ikonomou, M. G. (2002). Assessment of chlorinated dibenzo-p-dioxin and dibenzofuran trends in sediment and crab hepatopancreas from pump mill and harbor sites using multivariate- and index-based approaches. Environmental Science & Technology, 36(9), 1869–1878.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Johan Liebens
    • 1
  • Carl J. Mohrherr
    • 2
  • Natalie K. Karouna-Renier
    • 2
    • 3
  • Richard A. Snyder
    • 2
  • K. Ranga Rao
    • 2
  1. 1.Department of Environmental StudiesUniversity of West FloridaPensacolaUSA
  2. 2.Center for Environmental Diagnostics and BioremediationUniversity of West FloridaPensacolaUSA
  3. 3.Patuxent Wildlife Research Center, U.S. Geological SurveyLaurelUSA

Personalised recommendations