Skip to main content
Log in

Modelling Ammonia Losses After Field Application of Biogas Slurry in Energy Crop Rotations

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Over the past few years the number of biogas slurries, which are generally used as nitrogen fertilisers, have seen a steady increase in Germany. A mechanistic ammonia volatilisation model was developed to predict the ammonia losses of these slurries when applied to bare soil, maize, wheat and rye grass canopies. Data for model development were collected from several field measurements carried out at two locations in Northern Germany between the years of 2007 and 2008. Additionally, the behaviour of the slurries on and in the soil was investigated through the use of infiltration pot experiments. The model includes three main compartments: slurry, atmosphere and soil. The soil compartment model is relatively simple, as the slurry infiltration, nitrification and ploughing dislocation into the soil determined in the experiments showed quantitatively no significant differences between the tested slurries (mono-fermented, co-fermented and pig slurry) and soils (sand soil and loamy sand). Hence, instead of a complex soil model, stable reduction factors, as derived from the experiments, were implemented in the model. Simulated ammonia emissions were statistically compared (root mean square error (RMSE), modelling efficiency (ME), linear regression) to the observed emissions. All evaluations showed an acceptable model performance (RMSE = 1.80 kg N ha−1), although there were a few number of anomalies which could not be modelled in an adequate way. A model sensitivity analysis showed that temperature and slurry pH value are the main drivers of NH3 volatilization in the model. Following a change of +1°C or of +0.1 pH unit ammonia volatilization will increase by about 1% and 1.6% of the applied total ammoniacal nitrogen, respectively. We were able to show that a simple model approach could explain most factors of ammonia volatilization in biogas crop rotations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Humidity:

Air humidity (percent)

Wind:

Wind speed in a height of 2 m (metre per second)

T soil :

Soil temperature (Kelvin)

T air :

Air temperature (Kelvin)

T air_K :

Air temperature (Kelvin)

Radiation:

Global radiation (watts per square metre)

Precipitation:

Precipitation (millimetre)

Rn:

Net solar radiation (watts per square metre)

e a :

Actual vapour pressure (millibar)

e s :

Saturation vapour pressure (millibar)

delta:

Slope of vapour pressure deficiency curve (millibar per Kelvin)

ρ :

Air density (kilogramme per cubic metre)

Cp:

Heat capacity of the air (joules per kilogramme per Kelvin)

ζ :

Psychrometric constant (millibar per Kelvin)

λ :

Latent heat of evaporation (joules per kilogramme)

r c pen :

Vegetation resistance for H2O (seconds per metre)

ETp:

Actual evapotranspiration (millimetre per second)

kumETp:

Cumulative evapotranspiration (millimetre)

LAI:

Leaf area index (square metre per square metre)

exkg:

Extinction coefficient (−)

h :

Vegetation height (metre)

k a :

Von Karman’s constant (−)

l :

Height of internal boundary layer (metre)

Ri:

Richardson number (−)

z :

Height above ground (metre)

z 0 :

Roughness length (metre)

u * :

Friction wind velocity (metre per second)

r a :

Resistance in turbulent layer for NH3 (seconds per metre)

r b :

Resistance in the laminar boundary layer for NH3 (seconds per metre)

r c :

Resistance within the slurry surface layer for NH3 (seconds per metre)

d :

Zero plane displacement height (metre)

k loss :

Transfer coefficient for NH3 volatilisation (metre per second)

β 0, β 1, β 2 :

constants for the calculation of r c (for NH3) (−)

β:

Constant for the calculation of r c (for NH3) (−)

θ surface :

Relative volumetric water content of slurry layer (−)

ξ :

Atmospheric stability correction (−)

plough:

Trigger (0 = no ploughing; 1 = ploughing) (−)

incorptime:

Time step of ploughing event (−)

pHinc :

pH reduction factor for ploughing event (−)

waterinc :

Water reduction factor for ploughing event (−)

NH4inc :

NH4 reduction factor for ploughing event (−)

concNH3 :

NH3 concentration in slurry surface layer (grammes per square metre)

TANakt :

Total ammoniacal nitrogen in slurry surface layer (grammes per square metre)

AmmN:

Ammonium content of slurry (grammes per square metre)

losscum :

Cumulative NH3 losses (kilogrammes per hectare)

nitrate:

Nitrate in surface layer (kilogrammes per hectare)

pHslurry :

pH of the slurry liquid (−)

NH4applied :

Ammonium applied (grammes per square metre)

amount:

Biogas slurry liquid (litres per square metre)

DM:

Dry matter of slurry (−)

infiltration:

Infiltration loss constant (−)

θ soil :

Relative volumetric water content of soil surface layer (−)

α :

Constant for the calculation of nitrate (−)

ε :

Constant for the calculation of nitrate (−)

References

  • Beauchamp, E. G., Kidd, G. E., & Thurtell, B. (1978). Ammonia emission from sewage sludge applied in the field. Journal of Environmental Quality, 7, 141–146.

    Article  CAS  Google Scholar 

  • Beuning, J. D., Pattey, E., Edwards, G., & Van Heyst, B. J. (2008). Improved temporal resolution in process-based modelling of, agricultural soil ammonia emissions. Atmospheric Environment, 42, 3253–3265.

    Article  CAS  Google Scholar 

  • Bouwmeester, R. J. B., Vlek, P. L. G., & Stumpe, J. M. (1985). Effect of environmental factors on ammonia volatilization from a urea-fertilized soil. Soil Science Society of America Journal, 49(2), 376–381.

    Article  CAS  Google Scholar 

  • Bussink, D. W., Huijsmans, J. F. M., & Ketelaars, J. J. M. H. (1994). Ammonia emission from nitric-acid-treated cattle slurry surface applied to grassland. Netherlands Journal of Agricultural Science, 42, 293–309.

    Google Scholar 

  • Denmead, O. T., Freney, J. R., & Simpson, J. R. (1982). Dynamics of ammonia volatilization during furrow irrigation of maize. Soil Science Society of America Journal, 46(1), 149–155.

    Article  CAS  Google Scholar 

  • Duan, Z. H., & Xiao, H. L. (2000). Effects of soil properties on ammonia volati-lization. Journal of Soil Science and Plant Nutrients, 46(4), 845–852.

    Google Scholar 

  • Fachverband Biogas e.V. (2011). Biogasnutzung in Deutschland—Entwicklung von 1992 bis 2011. http://www.biogas.org/edcom/webfvb.nsf/id/DE_Branchenzahlen.11-01-07_Biogas Branchenzahlen 2010_erw.pdf. Accessed 18 Feb 2010

  • Freney, J. R., Simpson, J. R., & Denmead, O. T. (1983). Volatilization of ammonia. In J. R. Simpson & J. R. Freney (Eds.), Gaseous loss of nitrogen from plant–soil systems (pp. 1–32). The Hague/Boston/Lancaster: Martinus Nijhoff Dr. W. Junk Publishers.

    Google Scholar 

  • Genermont, S., & Cellier, P. (1997). A mechanistic model for estimating ammonia volatilization from slurry applied to bare soil. Agricultural and Forest Meteorology, 88(1–4), 145–167.

    Article  Google Scholar 

  • Gericke, D., Pacholski, A., & Kage, H. (2011). Measurement of ammonia emissions in multi-plot field experiments. Biosystems Engineering, 108(2), 164–173.

    Article  Google Scholar 

  • Hutchings, N. J., Sommer, S. G., & Jarvis, S. C. (1996). A model of ammonia volatilization from a grazing livestock farm. Atmospheric Environment, 30(4), 589–599.

    Article  CAS  Google Scholar 

  • Kochler, M., Kage, H., & Stützel, H. (2007). Modelling the effects of soil water limitations on transpiration and stomatal regulation of cauliflower. European Journal of Agronomy, 26(4), 375–383.

    Article  Google Scholar 

  • Lin, S., Dittert, K., Wu, W. L., & Sattelmacher, B. (2004). Added nitrogen interaction as affected by soil nitrogen pool size and fertilization—significance of displacement of fixed ammonia. JPNSS, 167, 138–146.

    CAS  Google Scholar 

  • Misselbrook, T. H., Brookman, S. K. E., Smith, K. A., Cumby, T., Williams, A. G., & McCrory, D. F. (2005). Crusting of stored dairy slurry to abate ammonia emissions: pilot-scale studies. Journal of Environmental Quality, 34(2), 411–419.

    CAS  Google Scholar 

  • Monteith, J. L., & Unsworth, M. H. (1973). Principles of environmental physics. London: Edward Arnold.

    Google Scholar 

  • Pacholski, A., Cai, G. X., Nieder, R., Richter, J., Fan, X. H., Zhu, Z. L., et al. (2006). Calibration of a simple method for determining ammonia volatilization in the field—comparative measurements in Henan Province, China. Nutrient Cycling in Agroecosystems, 74(3), 259–273.

    Article  CAS  Google Scholar 

  • Padro, J., Massman, W. J., Shaw, R. H., Delany, A., & Oncley, S. P. (1994). A comparison of some aerodynamic resistance methods using measurements over cotton and grass from the 1991 California Ozone Deposition Experiment. Boundary-Layer Meteorology, 71(4), 327–339.

    Article  Google Scholar 

  • Søgaard, H. T., Sommer, S. G., Hutchings, N. J., Huijsmans, J. F. M., Bussink, D. W., & Nicholson, F. (2002). Ammonia volatilization from field-applied animal slurry—the ALFAM model. Atmospheric Environment, 36(20), 3309–3319.

    Article  CAS  Google Scholar 

  • Sommer, S. G., & Husted, S. (1995). A simple model of pH in slurry. Journal of Agricultural Science, 124(3), 447–453.

    Article  Google Scholar 

  • Sommer, S. G., & Hutchings, N. J. (2001). Ammonia emission from field applied manure and its reduction—invited paper. European Journal of Agronomy, 15(1), 1–15.

    Article  CAS  Google Scholar 

  • Sommer, S. G., & Jacobsen, O. H. (1999). Infiltration of slurry liquid and volatilization of ammonia from surface applied pig slurry as affected by soil water content. Journal of Agricultural Science, 132, 297–303.

    Article  Google Scholar 

  • Sommer, S. G., & Olesen, J. E. (2000). Modelling ammonia volatilization from animal slurry applied with trail hoses to cereals. Atmospheric Environment, 34(15), 2361–2372.

    Article  CAS  Google Scholar 

  • Sommer, S. G., Olesen, J. E., & Christensen, B. T. (1991). Effects of temperature, wind speed and air humidity on ammonia volatilization from surface applied cattle slurry. Journal of Agricultural Science, 117, 91–100.

    Article  Google Scholar 

  • Stevens, R. J., Laughlin, R. J., & Frost, J. P. (1992). Effects of separation, dilution, washing and acidification on ammonia volatilization from surface-applied cattle slurry. Journal of Agricultural Science, 119, 383–389.

    Article  CAS  Google Scholar 

  • Stockle, C. O., Martin, S. A., & Campbell, G. S. (1994). CropSyst, a cropping systems simulation model: Water/nitrogen budgets and crop yield. Agricultural Systems, 46(3), 335–359.

    Article  Google Scholar 

  • Thom, A. S. (1972). Momentum, mass and heat-exchange of vegetation. Quarterly Journal Royal Meteorological Society, 98(415), 124–134.

    Article  Google Scholar 

  • Thompson, R., Pain, B., & Rees, Y. (1990). Ammonia volatilization from cattle slurry following surface application to grassland. Plant and Soil, 125(1), 119–128.

    Article  Google Scholar 

  • UBA German Federal Environment Agency (2008). Monitoring zur Wirkung des Erneuerbare-Energien-Gesetzes (EEG) auf die Stromerzeugung aus Biomasse. www.erneuerbare-energien.de/inhalt/36204/4593/. Accessed 10 Nov 2008.

  • Vandré, R., & Clemens, J. (1996). Studies on the relationship between slurry pH, volatilization processes and the influence of acidifying additives. Nutrient Cycling in Agroecosystems, 47(2), 157–165.

    Article  Google Scholar 

  • Vandre, R., & Kaupenjohann, M. (1998). In situ measurement of ammonia emissions from organic fertilizers in plot experiments. Soil Science Society of America Journal, 62(2), 467–473.

    Article  CAS  Google Scholar 

  • Weiland, P. (2006). Biomass digestion in agriculture: a successful pathway for the energy production and waste treatment in Germany. Engineering in Life Sciences, 6(3), 302–309.

    Article  CAS  Google Scholar 

  • Wu, J., Nofziger, D. L., Warren, J. G., & Hattey, J. A. (2003). Modeling ammonia volatilization from surface-applied swine effluent. Soil Science Society of America Journal, 67(1), 1–11.

    Article  CAS  Google Scholar 

  • Wulf, S., Maeting, M., Bergmann, S., & Clemens, J. (2001). Simultaneous measurement of NH3, N2O and CH4 to assess efficiency of trace gas emission abatement after slurry application. Phyton-Annales Rei Botanicae, 41(3), 131–142.

    CAS  Google Scholar 

  • Wulf, S., Maeting, M., & Clemens, J. (2002). Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading: I. Ammonia volatilization. Journal of Environmental Quality, 31(6), 1789–1794.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are thankful to the Schleswig-Holstein Ministry of Economy and Science for funding this work in the scope of the Biogas-Expert programme. We thank all co-workers, student aides, farm managers, biogas plant operators for their help and Chris Gow as well as the reviewers for the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Gericke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gericke, D., Bornemann, L., Kage, H. et al. Modelling Ammonia Losses After Field Application of Biogas Slurry in Energy Crop Rotations. Water Air Soil Pollut 223, 29–47 (2012). https://doi.org/10.1007/s11270-011-0835-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0835-4

Keywords

Navigation