Water, Air, & Soil Pollution

, Volume 222, Issue 1–4, pp 315–324 | Cite as

Comparison of In Vitro PBET and Phosphoric Acid Extraction as an Approach to Estimate Selenite and Selenate Bioaccessibility from Soil

  • Virginia Funes-Collado
  • Roser Rubio
  • José Fermín López-Sánchez


Several approaches have been used to estimate the bioaccessibility of trace metals from soils. Here, we applied phosphoric acid extraction and the in vitro test physiologically based extraction (PBET) to soils containing selenium (Se) and compared their performance in estimating the bioaccessibility of Se. For this purpose, we used two soil samples and two Certified Reference Material soil samples with a range of Se concentrations. The total Se contents were measured in the samples and in the extracts by hydride generation–atomic fluorescence spectroscopy. Moreover, we also measured selenite and selenate in the soil extracts (from phosphoric acid and from the PBET) using the coupled techniques liquid chromatography–UV photooxidation–atomic fluorescence spectroscopy and liquid chromatography–mass spectrometry with inductively coupled plasma. From the results obtained in the present study, the PBET showed that the selenium bioaccessible fraction was mainly attributed to the gastrointestinal step. When comparing the results from PBET with those of the phosphoric acid extraction, similar values of Se (IV) and Se (VI) were obtained for both extraction systems. An estimation of the bioaccessibility percentage of Se is also reported.


Selenite Selenate Bioaccessibility Soil PBET Phosphoric acid LC–UV–HGAFS LC–ICPMS 


  1. Body, H. B., Pedersen, F., Cohr, K. H., Damborg, A., & Jakobser, B. M. (1999). Exposure scenarios and guidance values for urban soil pollutants. Regulatory Toxicology Pharmacology, 30, 197–208.CrossRefGoogle Scholar
  2. Bosso, S. T., & Enzweiler, J. (2008). Bioaccessible lead in soils, slag, and mine wastes from an abandoned mining district in Brazil. Environmental Geochemistry and Health, 30, 219–229.CrossRefGoogle Scholar
  3. Canadian Soil Quality Guidelines (2009). Selenium. Environmental and human health effects. CCME (Canadian Council of Ministers of Environment). ISBN:978-1-896997-90-2 PDF.Google Scholar
  4. Carrizales, L., Razo, I., Téllez-Hernández, J. I., Torres-Nerio, R., Torres, A., Batres, L. E., et al. (2006). Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: importance of soil contamination for exposure of children. Environmental Research, 101, 1–10.CrossRefGoogle Scholar
  5. Denys, S., Tack, K., Caboche, J., & Delalain, P. (2008). Bioaccessibility, solid phase distribution, and speciation of Sb in soils and in digestive fluids. Chemosphere, 74, 711–716.CrossRefGoogle Scholar
  6. Dhillon, K. S., & Dhillon, S. K. (2003). Distribution and management of seleniferous soils. Advances in Agronomy, 79, 119–184.CrossRefGoogle Scholar
  7. Dhillon, K. S., Dhillon, S. K., & Dogra, R. (2010). Selenium accumulation by forage and grain crops and volatilization from seleniferous soils amended with different organic materials. Chemosphere, 78, 548–556.CrossRefGoogle Scholar
  8. Drexler, J. W., & Brattin, W. J. (2007). An in vitro procedure for estimation of lead relative bioavailability: with validation. Human and Ecological Risk Assessment, 13, 383–401.CrossRefGoogle Scholar
  9. Environment Agency U.K. (2009). Soil guideline values for selenium in soil. Science report SC050021/Selenium SGV.Google Scholar
  10. Environmental Protection, England and Wales (2005). The landfill (England and Wales) (Amendment) Regulations. No. 1640. Available at: http://www.opsi.gov.uk/si/si2005/20051640.htm. Accessed 5 Apr 2011.
  11. Fessler, A. J., Moller, G., Talcott, P. A., & Exon, J. H. (2003). Selenium toxicity in sheep grazing reclaimed phosphate mining sites. Veterinary and Human Toxicology, 45, 294–298.Google Scholar
  12. Finley, J. W. (2007). Increased intakes of selenium-enriched foods may benefit human health. Review. Journal of the Science of Food and Agriculture, 87, 1620–1629.CrossRefGoogle Scholar
  13. Goldberg, S., Martens, D. A., Forster, H. S., & Herbel, M. J. (2006). Speciation of selenium (IV) and selenium (VI) using coupled ion chromatography-hydride generation atomic absorption spectrometry. Soil Science Society of American Journal, 70, 41–47.Google Scholar
  14. González-Nieto, J., López-Sánchez, J. F., & Rubio, R. (2006). Comparison of chemical modifiers for selenium determination in soil aqua regia extracts by ZETAAS. Talanta, 69, 1118–1122.CrossRefGoogle Scholar
  15. Hansen, J. B., Oomen, A. G., Edelgaard, I., & Grøn, C. (2007). Oral bioaccessibility and leaching: tests for soil risk assessment. Engineering in Life Sciences, 7, 170–176.CrossRefGoogle Scholar
  16. Hartikainen, H. (2005). Biogeochemistry of selenium and its impact on food chain quality and human health. Journal of Trace Elements in Medicine and Biology, 18, 309–318.CrossRefGoogle Scholar
  17. Hawkesford, M. J., & Zhao, F. L. (2006). Strategies for increasing the selenium content in wheat. Journal of Cereal Science, 46, 282–292.CrossRefGoogle Scholar
  18. Intawongse, M., & Dean, J. R. (2006). In vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples. TrAC. Trends in Analytical Chemistry, 25, 876–886.CrossRefGoogle Scholar
  19. ISO 11466. (1995). Soil quality-extraction of trace elements soluble in aqua regia. International organization for standardization. Geneva. Switzerland.Google Scholar
  20. Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC Press.Google Scholar
  21. Keskinen, R., Ekholm, P., Yli-Halla, M., & Hartikainen, H. (2009). Efficiency of different methods in extracting selenium from agricultural soils of Finland. Geoderma, 153, 87–93.CrossRefGoogle Scholar
  22. Latawiec, A. E., Simmons, P., & Reid, B. J. (2010). Decision-makers’ perspectives on the use of bioaccessibility for risk-based regulation of contaminated land. Environment International, 36, 383–389.CrossRefGoogle Scholar
  23. Lemly, A. D. (2007). A procedure for NEPA assessment of selenium hazards associated with mining. Environmental Monitoring and Assessment, 125, 361–375.CrossRefGoogle Scholar
  24. Ljung, K., Oomen, A., Duits, M., Selinus, O., & Berglund, M. (2007). Bioaccessibility of metals in urban playground soils. Journal of Environmental Science and Health. Part A: Toxic/Hazardous Substances and Environmental Engineering, 42, 1241–1250.CrossRefGoogle Scholar
  25. Madrid, F., Biasioli, M., & Ajmone-Marsan, F. (2008). Availability and bioaccessibility of metals in fine particles of some urban soils. Archives of Environmental Contamination and Toxicology, 55, 21–32.CrossRefGoogle Scholar
  26. Makris, K. C., Quazi, S., Nahas, R., Sarkar, D., Datta, R., & Sylvia, V. L. (2008). In vitro model improves the prediction of soil arsenic bioavailability: worst-case scenario. Environmental Science & Technology, 42, 6278–6284.CrossRefGoogle Scholar
  27. Meunier, L., Wragg, J., Koch, I., & Reimer, K. J. (2010). Method variables affecting the bioaccessibility of arsenic in soil. Journal of Environmental Science and Health. Part A: Toxic/Hazardous Substances and Environmental Engineering, 45, 517–526.CrossRefGoogle Scholar
  28. Morman, S. A., Plumlee, G. S., & Smith, D. B. (2009). Application of in vitro extraction studies to evaluate element bioaccessibility in soils from a transect across the United States and Canada. Applied Geochemistry, 4, 1454–1463.CrossRefGoogle Scholar
  29. Orero Iserte, L., Roig-Navarro, A. F., & Hernéndez, F. (2004). Simultaneous determination of arsenic and selenium species in phosphoric acid extracts of sediment samples by HPLC-ICP-MS. Analytica Chimica Acta, 527, 97–104.CrossRefGoogle Scholar
  30. Pouschat, P., & Zagury, G. J. (2006). In vitro gastrointestinal bioavailability of arsenic in soils collected near CCA-treated utility poles. Environmental Science & Technology, 40, 4317–4323.CrossRefGoogle Scholar
  31. Reeder, R. J., Schoonen, M. A. A., & Lanzirotti, A. (2006). Metal speciation and its role in bioaccessibility and bioavailability. Reviews in Mineralogy and Geochemistry, 64, 59–113.CrossRefGoogle Scholar
  32. Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability physiologically based extraction test. Environmental Science & Technology, 30, 422–430.CrossRefGoogle Scholar
  33. Ruiz-Chancho, M. J., López-Sánchez, J. F., & Rubio, R. (2007). Analytical speciation as a tool to assess arsenic behaviour in soils polluted by mining. Analytical and Bioanalytical Chemistry, 387, 627–635.CrossRefGoogle Scholar
  34. Scientific Committee on Food (2000). SCF/CS/NUT/UPPLEV/25 Final. Opinion of the scientific committee of food on the tolerable upper intake level of selenium. European Comission. Health & Consumer Protection Directorate General. European Commission. Brussels. BelgiumGoogle Scholar
  35. Sharma, S., Vance, G. F. (2007) Dissolution chemistry of inorganic selenium in alkaline mine. In D. Sarkar, R. Datta and R. Hannigan. (Eds.), Developments in environmental sciences Vol 5. Oxford: Elsevier.Google Scholar
  36. Smith, B. A., Kirk, J. L., & Stephenson, G. L. (2010). The influence of liquid to soil ratios on arsenic and lead bioaccessibility in reference and field soil. Human and Ecological Risk Assessment, 16, 149–162.CrossRefGoogle Scholar
  37. Smith, B., Rawlins, B. G., Cordeiro, M. J. A. R., Hutchins, M. G., Tiberindwa, J. V., Sserinjogi, L., et al. (2000). The bioaccessibility of essential and potentially toxic trace elements in tropical soils from Mukono District, Uganda. Journal of the Geological Society, 157, 885–891.CrossRefGoogle Scholar
  38. Smith, E., Weber, J., & Juhasz, A. L. (2009). Arsenic distribution and bioaccessibility across particle fractions in historically contaminated soils. Environmental Geochemistry and Health, 31, 85–92.CrossRefGoogle Scholar
  39. Somogyi, Z., Kiss, I., Kádár, I., & Bakoni, G. (2007). Toxicity of selenate and selenite to the potworm Enchytraeus albidus (Annelida: Enchytraeidae): a laboratory test. Ecotoxicology, 16, 379–384.CrossRefGoogle Scholar
  40. Spadoni, M., Voltaggio, M., Carcea, M., Coni, E., Raggi, A., & Cubadda, F. (2007). Bioaccessible selenium in Italian agricultural soils: comparison of the biogeochemical and pedoclimatic variables. The Science of the Total Environment, 376, 160–177.CrossRefGoogle Scholar
  41. Uden, P. C. (2005). Speciation of Selenium. In R. Cornelis, J. Caruso, H. Crews & K. Heumann. (Eds.), Handbook of Elemental Speciation II—Species in the Environment, Food, Medicine and Occupational Health. Chichester: Wiley Google Scholar
  42. US EPA (2009). Highlights of the child-specific exposure factors handbook. National Center for Environmental Assessment. Washington, DC; EPA/600/R-08/135. Available on: http://www.epa.gov/ncea. Accessed 5 Apr 2011.
  43. Wragg, J. J., Cave, M. R., & for the Environmental Agency. (2002). In vitro methods for the measurement of the oral bioaccessibility of selected metals and metalloids in soils: A critical review. R&D technical report P5-062/TR/01. Environmental Agency. Bristol. UK.Google Scholar
  44. Zagury, G. J., Bedeaux, C., & Welfringer, B. (2009). Influence of mercury speciation and fractionation on bioaccessibility in soils. Archives of Environmental Contamination and Toxicology, 56, 371–379.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Virginia Funes-Collado
    • 1
  • Roser Rubio
    • 2
  • José Fermín López-Sánchez
    • 2
  1. 1.Department of Analytical Chemistry, Faculty of ChemistryUniversity of BarcelonaBarcelonaSpain
  2. 2.Department of Analytical Chemistry, Faculty of Chemistry, and Water Research InstituteUniversity of BarcelonaBarcelonaSpain

Personalised recommendations