Skip to main content
Log in

Distribution of Metals in Vadose Zone of the Alluvial Plain in a Mining Creek Inferred from Geochemical, Mineralogical and Geophysical Studies: The Beal Wadi Case (Cartagena–La Union Mining District, SE Spain)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The assessment of metals dispersal in polluted mining areas is a very complex issue, usually needing data from several analytical techniques in a joint approach. The present work focuses on the impact of the mining activity on lowlands alluvial plain sediments from an ephemeral creek, their role as source or sink of pollution and the spatial distribution of metals within the zone. In-depth distribution of elements (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, S, Ti and Zn) coming from mining activities was investigated by using X-ray fluorescence techniques and their mineralogical form using X-ray diffraction. A 2-D electrical resistance tomography field survey was carried out throughout at the creek bed to interpret the potential relationships between chemical, mineralogical and geophysical parameters. The application of leaching procedure (DIN 38414-S4 test) allows us to know the sediment’s heavy metals hazard and their potential mobility when changing redox conditions. From the results it was found that redox process of sulphur and the presence of carbonate influence the distribution of metals along the profile. In the present work, the precipitation of carbonates seems the most important process, especially for elements such as Zn and Mn. Secondary precipitation of sulphides enables the trapping of metals at sulphur-rich levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alloway, B.J. (Ed.) (1995). Heavy metals in soils. 2nd Ed. Blackie Academic and Professional. 368 pp.

  • Alvarez-Rogel, J., Jimenez-Carceles, F. J., Roca, M. J., & Ortiz, R. (2007). Changes in soils and vegetation in a Mediterranean coastal salt marsh impacted by human activities. Estuarine, Coastal and Shelf Science, 73(3–4), 510–526.

    Article  Google Scholar 

  • Atekwana, E. A., Sauck, W. A., & Werkema, D. D., Jr. (2000). Investigations of geoelectrical signatures at a hydrocarbon contaminated site. Journal of Applied Geophysics, 44, 167–180.

    Article  Google Scholar 

  • Bargar, J. R., Fuller, C. C., Marcus, M. A., Brearley, A. J., Perez de la Rosa, M., Webb, S. M., et al. (2009). Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ. Geochimica et Cosmochimica Acta, 73(4), 889–910.

    Article  CAS  Google Scholar 

  • Baron, D., & Palmer, C. D. (1996). Solubility of jarosite at 4–35°C. Geochimica et Cosmochimica Acta, 60(2), 185–195.

    Article  CAS  Google Scholar 

  • Berthold, S., Bentley, L. R., & Hayashi, M. (2004). Integrated hydrogeological and geophysical study of depression focused groundwater recharge in the Canadian prairies. Water Resources Research, 40(6), W065051–W0650514.

    Article  Google Scholar 

  • Brookins, D.G. (1987). Eh-pH diagrams for geochemistry. Springer. 176 pp.

  • Buhrke, V. E., Jenkins, R., & Smith, D.-K. (1998). A Practical Guide for the Preparation of Specimens for X-Ray Fluorescence and X-Ray Diffraction Analysis (p. 345). New York: Wiley-VCH.

    Google Scholar 

  • Carroll, S. A., O’Day, P. A., & Piechowski, M. (1998). Rock–water interactions controlling zinc, cadmium and lead concentrations in surface waters and sediments, U.S. Tri-state Mining District. 2. Geochemical interpretation. Environmental Science & Technology, 32(7), 956–965.

    Article  CAS  Google Scholar 

  • DIN 38414-S4. (1984). Schlamm und Sedimente, Bestimmung der Eluierbarkeit mit Wasser. Berlin: DIN Deutsches Institut für Normung.

    Google Scholar 

  • Dold, B. (1999). Mineralogical and geochemical changes of copper flotation tailings in relation to their original composition and climatic setting: Implications for acid mine drainage and element mobility. PhD Thesis. University of Geneve. 230 p.

  • Drahor, M. G., Göktürkler, G., Berge, M. A., & Özgur Kurtulmus, T. (2006). Application of electrical resistivity tomography technique for investigation of landslides: A case from Turkey. Environmental Geology, 50, 147–155.

    Article  Google Scholar 

  • Drouet, C., Pass, K. L., Baron, D., Draucker, S., & Navrotsky, A. (2004). Thermochemistry of jarosite-alunite and natrojarosite-natroalunite solid solutions. Geochimica et Cosmochimica Acta, 68(10), 2197–2205.

    Article  CAS  Google Scholar 

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 407, 3972–3985.

    Article  Google Scholar 

  • Fic, M., & Isenbeck-Schröter, M. (1989). Batch studies for the investigation of the mobility of the heavy metals Cd, Cr, Cu and Zn. Journal of Contaminant Hydrology, 4, 69–78.

    Article  CAS  Google Scholar 

  • Fortsner, U. (1989). Contaminated Sediments: Lectures on Environmental Aspects of Particle-Associated Chemicals in Aquatic Systems. New York: Springer. 157 pp.

    Google Scholar 

  • Frau, F., Ardau, C., & Fanfani, L. (2009). Environmental geochemistry and mineralogy of lead at the old mine area of Baccu Locci (south-east Sardinia, Italy). Journal of Geochemical Exploration, 100(2–3), 105–115.

    Article  CAS  Google Scholar 

  • Garcia, C. (2004). “Impacto y riesgo ambiental de los residuos minero-metalúrgicos de la sierra minera de Cartagena–La Unión”. Ph D. Thesis. Universidad Politécnica de Cartagena (in Spanish).

  • Garcia, G., Faz, A., & Conesa, H. M. (2003). Selection of autochtonous plant species form SE Spain for soil lead phytoremediation purposes. Water, Air, & Soil Pollution: Focus, 3(3), 243–250.

    Article  CAS  Google Scholar 

  • Garcia, G., Manteca, J. I., & Peñas, J. M. (2007). Leaching and transport of Zn through soil profiles in a seasonal river of a mining area in SE Spain. Global NEST Journal, 9(3), 214–223.

    Google Scholar 

  • Geotomo soft,. (2006). Res2dinv software, ver. 3.55.64, http://www.geoelectrical.com

  • Graupner, T., Kassahun, A., Rammlmair, D., Meima, J. A., Kock, D., Furche, M., et al. (2007). Formation of sequences of cemented layers and harpans within sulphide-bearing mine tailings (mine district Freiberg, Germany). Applied Geochemistry, 22, 2486–2508.

    Article  CAS  Google Scholar 

  • Gonzalez-Fernandez, O., Queralt, I., Carvalho, M. L., & Garcia, G. (2007). Elemental analysis of mining wastes by energy dispersive X-ray fluorescence (EDXRF). Nuclear Instruments and Methods in Physics Research B, 262, 81–86.

    Article  CAS  Google Scholar 

  • Gonzalez-Fernandez, O., Jurado-Roldan, A. and Queralt, I. (2010a) Geochemical and Mineralogical Features of Overbank and Stream Sediments of the Beal Wadi (Cartagena–La Union Mining District, SE Spain): Relation to Former Lead–Zinc Mining Activities and Its Environmental Risk. Water, Air and Soil Pollution, (early view, doi: 10.1007/s11270-010-0458-1).

  • Gonzalez-Fernandez, O., Queralt, I., Manteca, J.I., Garcia, G., Carvalho, M.L. (2010b) Distribution of metals in soils and plants around mineralizad zones at Cartagena–La Unión mining district (SE, Spain). Environmental Earth Sciences (early view, doi: 10.1007/s12665-010-0796-8).

  • Guo, T., De Laune, R. D., & Patrick, W. H., Jr. (1997). The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environment International, 23(3), 305–316.

    Article  CAS  Google Scholar 

  • Hudson-Edwards, K. A., Schell, C., Macklin, M. G. (1999). Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tino area, southwest Spain. Applied Geochemistry, 14, 1015–1030.

    Google Scholar 

  • INM, (2000). National Meteorology Institute. Meteorological values database. Spanish Ministry of Environment.

  • Jimenez-Carceles, F. J., Alvarez-Rogel, J., & Conesa Alcaraz, H. M. (2008). Trace element concentrations in saltmarsh soils strongly affected by wastes from metal sulphide mining areas. Water, Air, and Soil Pollution, 188(1–4), 283–295.

    Article  CAS  Google Scholar 

  • Kempter, H., Görres, M., & Frenzel, B. (1997). Ti and Pb concentrations in rainwater-fed bogs in Europe as indicators of past anthropogenic activities. Water, Air, and Soil Pollution, 100, 367–377.

    Article  CAS  Google Scholar 

  • Linares Martinez, F. (2005). Juegos de estrategia y consecuencias inintencionadas: un modelo con resultados perversos de la crisis de la minería de Cartagena–La Unión. Papers Journal, 75, 35–61.

    Google Scholar 

  • Löwner, M. O., Preston, N. J., & Dikau, R. (2005). Reconstruction of a colluvial body using geoelectrical resistivity. Zeitschrift fuÉr Geomorphologie N.F, 49, 225–238.

    Google Scholar 

  • Lowrie, W. (2007). Fundamentals of Geophysics (p. 381). Cambridge: Cambridge University Press.

    Google Scholar 

  • Manteca Martinez, J.I., Perez de Perceval Verde, M.A., Lopez-Morell, M.A. (2005). La industria minera en Murcia durante la época contemporánea. Pp. 123–137. In: Antolinos Marin, J.A., Manteca Martinez J.I. (2005). Patrimonio Minero de la Región de Murcia. Bocamina. 170 pp. Gobierno de la Región de Murcia: Spain.

  • Marin-Guirao, L. (2007). Aproximación ecotoxicológica a la contaminación por metales pesados en la laguna costera del Mar Menor. PhD Thesis. Universidad de Murcia. 190 pp. (In spanish).

  • Margui, E. 2006. Analytical methodologies based on X-ray fluorescence spectrometry (XRF) and inductively couple plasma spectroscopy (ICP) for the assessment of metal dispersal around mining environments. Ph.D. Thesis, Department of Chemistry, University of Girona (Spain). 274 pp.

  • Margui, E., Queralt, I., & Van Grieken, R. (2009). X-ray fluorescence analysis, sample preparation for. In R. A. Meyers (Ed.), Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation (p. 20). New York: Wiley Interscience.

    Google Scholar 

  • Martín Camino, M. (1996). «Del final de la Edad de Bronce al Mundo Bizantino». In: Tornel Cobacho, C. (coord.). Manual de Historia de Cartagena.Murcia: Universidad de Murcia. (in Spanish).

  • Martinez-Pagan, P. (2006). Aplicación de diferentes técnicas no destructivas de prospección geofísica a problemas relacionados con contaminación ambiental producida por diferentes actividades antrópicas en la región de Murcia. PhD Tesis. Technical Universtity of Cartagena. 476 pp. (In Spanish)

  • Metwaly, M., El-Qady, G., Matsushima, J., Szalai, S., Al-Arifi, N. S. N., & Taha, A. (2008). Contribution of 3-D electrical resistivity tomography for landmines detection. Nonlinear Processes in Geophysics, 15, 977–986.

    Article  Google Scholar 

  • Moreno-Grau, S., Cascales-Pujalte, J. A., Martínez-García, M. J., Angosto, J. M., Moreno, J., Bayo, J., García-Sánchez, A., Moreno-Clavel, J. (2002). Relationships between levels of lead, cadmium, zinc and copper in soil in settleable particulate matter in Cartagena. Water, Air and Soil Pollution, 137, 365–383.

    Google Scholar 

  • Nguyen, H. L., Braun, M., Szaloski, I., Baeyens, W., Van Grieken, R., & Leermakers, M. (2009). Tracing the metal pollution history of the Tisza river through the analysis of a sediment depths profile. Water, Air, and Soil Pollution, 200, 119–132.

    Article  CAS  Google Scholar 

  • Nordstrom, D.K., Alpers, C.N., (1999). Geochemistry of acid mine waters; in Plumlee G.S. and Logsdon, M.J. (eds) The environmental geochemistry of mineral deposits, part A. Processes, techniques and health issues. Society of Economic Geologists, reviews in economic geology, v. 6A, pp. 133–160.

  • NRCS (Natural Resources Conservation Services) (2004). Soil Survey Laboratory Methods Manual. Version 4.0. Soil Survey Investigations report Nº 42. 735 pp. <http://soils.usda.gov/technical/lmm/>.

  • O’Day, P. A., Carroll, S. A., & Waychunas, G. A. (1998). Rock–water interactions controlling zinc, cadmium and lead concentrations in surface waters and sediments, U.S. Tri-State Mining. 1. Molecular identification using X-ray absorption spectroscopy. Environmental Science & Technology, 32(7), 943–955.

    Article  Google Scholar 

  • Pham, V.N., Boyer, D., Le Mouël, J.L., Nguyen, T.K.T. (2002). Hydrogeological investigation in the Mekong Delta around Ho-Chi-Minh City (South Vietnam) by electric tomography. C.R. Geoscience, 334, 733–740.

  • Prietzel, J., Thieme, J., Herre, A., Salomé, M., & Eichert, D. (2008). Differentiation between adsorbed and precipitated sulphate in soils and at micro-sites of soil aggregates by sulphur K-edge XANES. European Journal of Soil Science, 59, 730–743.

    Article  CAS  Google Scholar 

  • Reimann, C., & Caritat, P. (1998). Chemical Elements in the Environment: Factsheets for the Geochemist and Environmental Scientist (p. 398). New York: Springer.

    Google Scholar 

  • Robles-Arenas, V.M. (2007). Caracterización hidrogeológica de la Sierra de Cartagena–La Unión (SE de la Peninsula Ibérica). Impacto de la minería abandonada sobre el medio hídrico. PhD Tesis. Technical University of Catalonia. 146 pp.

  • Robles-Arenas, V. M., Rodríguez, R., García, C., Manteca, J. I., & Pascual, L. (2006). Sulphide-mining impacts in the physical environment: Sierra de Cartagena–La Unión (SE Spain) case study. Environmental Geology, 51(1), 47–64.

    Article  CAS  Google Scholar 

  • Rodriguez, L., Ruiz, E., Alonso-Azcarate, J., & Rincón, J. (2009). Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. Journal of Environmental Management, 90, 1106–1116.

    Article  CAS  Google Scholar 

  • Rousseau, R. M. (2001). Detection limit and estimate of uncertainty of analytical XRF results. Rigaku Journal, 18(2), 33–47.

    CAS  Google Scholar 

  • Roussel, C., Neel, C., & Bril, H. (2000). Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. The Science of the Total Environment, 263, 209–219.

    Article  CAS  Google Scholar 

  • Simonneau, J. (1973). Mar Menor. Evolution sedimentologique et geoquimique recent du remplissage. Ph.D. thesis, University Paul Sabatier, France, 172 pp.

  • Soupios, P., Papadopoulos, N., Papadopoulos, I., Kouli, M., Vallianatos, F., Sarris, A., et al. (2007). Application of integrated methods in mapping waste disposal areas. Environmental Geology, 53, 661–675.

    Article  Google Scholar 

  • SPECTRAplus software package, (1998). Bruker AXS, Oestliche Rheinbrueckenstr. 50, D-76187 Karlsruhe, Germany.

  • Stumm, W., & Morgan, J. J. (1996). Aquatic Chemistry Chemical Equilibria and Rates in Natural Waters (3rd ed., p. 1022). New York: Wiley.

    Google Scholar 

  • Svoboda, J. (2004). Review of magnetic separation equipment and techniques. In J. Svoboda (Ed.), Magnetic Techniques for the Treatment of Materials. New York: Springer. 642 pp.

    Google Scholar 

  • Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray, K. J., Parker, D., et al. (2004). Biogenic manganese oxides: Properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences, 32, 287–328.

    Article  CAS  Google Scholar 

  • U.S. EPA. (2008) Drinking water contaminants. Environmental Protection Agency (EPA): http://www.epa.gov/safewater/contaminants/index.html#listmcl (May, 2008)

  • Vilar, J.B., Egea-Bruno, P.M. (1990). La minería murciana contemporánea (1840–1930). Universidad de Murcia, Academia Alfonso X el Sabio. Excmo. Ayuntamiento de Cartagena, Caja Murcia (Eds.), Spain, 389 pp.

  • Vilar, J. B., Egea, P. M., & Fernandez, J. C. (1991). La minería murciana contemporánea (1930–1985). Madrid: Instituto Tecnológico Geominero de España.

    Google Scholar 

  • WHO. (2006). Guidelines for drinking water quality. 3rd Edition.

  • Yang, H. D., & Rose, N. L. (2003). Distribution of mercury in six lake sediment cores across the UK. The Science of the Total Environment, 304(1–3), 391–404.

    CAS  Google Scholar 

  • Younger, P. L., Mackay, R., & Connorton, B. J. (1993). Streambed sediment as a barrier to groundwater pollution: Insights from fieldwork and modelling in the River Thames Basin. Water Environment Journal, 7(6), 577–585.

    Article  CAS  Google Scholar 

  • Younger, P. L., & Robins, N. S. (2002). Mine Water Hydrogeology and Geochemistry (p. 396). London: Geological society.

    Google Scholar 

Download references

Acknowledgements

This research was made on the framework of the projects CGL2007-66861-C04-00 and CSD2006-00044 of the Spanish National Research Programme. O. Gonzalez-Fernandez gratefully acknowledges a grant from the Spanish Ministry of Science and Education (Ref. BES2005-6810). Rafael Bartrolí (ICP-OES), Merce Cabanas (ICP-MS) and Josep Elvira are acknowledged for its technical support. Suggestions and comments from two anonymous reviewers improved considerably the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Gonzalez-Fernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Fernandez, O., Rivero, L., Queralt, I. et al. Distribution of Metals in Vadose Zone of the Alluvial Plain in a Mining Creek Inferred from Geochemical, Mineralogical and Geophysical Studies: The Beal Wadi Case (Cartagena–La Union Mining District, SE Spain). Water Air Soil Pollut 221, 45–61 (2011). https://doi.org/10.1007/s11270-011-0768-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0768-y

Keywords

Navigation