Skip to main content

Advertisement

Log in

Manure as a Source of Antibiotic-Resistant Escherichia coli and Enterococci: a Case Study of a Wisconsin, USA Family Dairy Farm

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The spread of antibiotic-resistant bacteria in the environment is raising serious public health concerns, and manure is being increasingly recognized as a major source of antibiotic-resistant bacteria. In this research, we isolated Escherichia coli and enterococci from manure produced in a Wisconsin, USA family dairy farm to determine their resistance to six representative antibiotics. The average densities for E. coli and enterococci were 6.37(±4.38) × 107 colony formation units (CFU) g−1 and 1.60(±1.57) × 104 CFU g−1, respectively. The E. coli isolates were found to be resistant to cephalothin, ampicillin, tetracycline, and erythromycin. In addition to these four antibiotics, the Enterococcus isolates were also resistant to gentamicin and ciprofloxacin. Additionally, we examined the survival and growth of E. coli and enterococci in dairy manure over a period of ~3 days. While the densities of enterococci remained stable over the study period, the concentrations of E. coli on average increased by 1.5 log10 units. Further tests of the bacterial antibiotic resistance over time showed no significant changes in the prevalence of antibiotic resistance. This result indicated that slightly aged manure could represent a larger source of antibiotic-resistant E. coli than fresh manure and the accumulation of antibiotic-resistant E. coli and enterococci in the agricultural fields must be accounted for in the modeling of the spread of antibiotic-resistant bacteria in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander, T. W., Yanke, L. J., Topp, E., Olson, M. E., Read, R. R., Morck, D. W., et al. (2008). Effect of subtherapeutic administration of antibiotics on the prevalence of antibiotic-resistant Escherichia coli bacteria in feedlot cattle. Applied and Environmental Microbiology, 74, 4405–4416.

    Article  CAS  Google Scholar 

  • Anderson, M. E., & Sobsey, M. D. (2006). Detection and occurrence of antimicrobially resistant E-coli in groundwater on or near swine farms in eastern North Carolina. Water Science and Technology, 54, 211–218.

    Article  CAS  Google Scholar 

  • Arthurs, C. E., Jarvis, G. N., & Russell, J. B. (2001). The effect of various carbonate sources on the survival of Escherichia coli in dairy cattle manure. Current Microbiology, 43, 220–224.

    Article  CAS  Google Scholar 

  • Chee-Sanford, J. C., Aminov, R. I., Krapac, I. J., Garrigues-Jeanjean, N., & Mackie, R. I. (2001). Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Applied and Environmental Microbiology, 67, 1494–1502.

    Article  CAS  Google Scholar 

  • Chee-Sanford, J. C., Mackie, R. I., Koike, S., Krapac, I. G., Lin, Y. F., Yannarell, A. C., et al. (2009). Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Journal of Environmental Quality, 38, 1086–1108.

    Article  CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute. (2006). Performance standards for antimicrobial disk susceptibility tests; approved standard (9th ed.). Wayne: Clinical and Laboratory Standards Institute.

    Google Scholar 

  • Cupakova, S., & Lukasova, J. (2003). Agricultural and municipal waste water as a source of antibiotic-resistant enterococci. Acta Veterinaria Brno, 72, 123–129.

    Article  Google Scholar 

  • Diez-Gonzalez, F., Jarvis, G. N., Adamovich, D. A., & Russell, J. B. (2000). Use of carbonate and alkali to eliminate Escherichia coli from dairy cattle manure. Environmental Science & Technology, 34, 1275–1279.

    Article  CAS  Google Scholar 

  • Duriez, P., & Topp, E. (2007). Temporal dynamics and impact of manure storage on antibiotic resistance patterns and population structure of Escherichia coli isolates from a commercial swine farm. Applied and Environmental Microbiology, 73, 5486–5493.

    Article  CAS  Google Scholar 

  • Gonzalez, A. R., Ndung’u, K., & Flegal, A. R. (2005). Natural occurrence of hexavalent chromium in the aromas red sands aquifer. California, Environmental Science & Technology, 39, 5505–5511.

    CAS  Google Scholar 

  • Haack, B. J., & Andrews, R. E. (2000). Isolation of Tn916-like conjugal elements from swine lot effluent. Canadian Journal of Microbiology, 46, 542–549.

    CAS  Google Scholar 

  • Halbert, L. W., Kaneene, J. B., Ruegg, P. L., Warnick, L. D., Wells, S. J., Mansfield, L. S., et al. (2006). Evaluation of antimicrobial susceptibility patterns in Campylobacter spp isolated from dairy cattle and farms managed organically and conventionally in the midwestern and northeastern United States. Journal of the American Veterinary Medical Association, 228, 1074–1081.

    Article  CAS  Google Scholar 

  • Hodgson, C. J., Bulmer, N., Chadwick, D. R., Oliver, D. M., Heathwaite, A. L., Fish, R. D., et al. (2009). Establishing relative release kinetics of faecal indicator organisms from different faecal matrices. Letters in Applied Microbiology, 49, 124–130.

    Article  CAS  Google Scholar 

  • Hofacre, C. L., de Cotret, A. R., Maurer, J. J., Garritty, A., & Thayer, S. G. (2000). Presence of fluoroquinolone-resistant coliforms in poultry litter. Avian Diseases, 44, 963–967.

    Article  CAS  Google Scholar 

  • Holzel, C., & Bauer, J. (2008). Salmonella spp. in bavarian liquid pig manure: Occurrence and relevance for the distribution of antibiotic resistance. Zoonoses and Public Health, 55, 133–138.

    Article  CAS  Google Scholar 

  • Holzel, C. S., Harms, K. S., Kuchenhoff, H., Kunz, A., Muller, C., Meyer, K., et al. (2010). Phenotypic and genotypic bacterial antimicrobial resistance in liquid pig manure is variously associated with contents of tetracyclines and sulfonamides. Journal of Applied Microbiology, 108, 1642–1656.

    Article  CAS  Google Scholar 

  • Hunter, J. E. B., Shelley, J. C., Walton, J. R., Hart, C. A., & Bennett, M. (1992). Apramycin resistance plasmids in Escherichia coli: Possible transfer to salmonella typhimurium in calves. Epidemiology and Infection, 108, 271–278.

    Article  CAS  Google Scholar 

  • Institute of Medicine. (2003). The resistance phenomenon in microbes and infectious disease vectors: Implications for human health and strategies for containment (p. xix). Washington, DC: National Academies. 313 p.

    Google Scholar 

  • Jordan, D., Morris, S. G., Gill, P., Andersen, L. M., Chowdhury, A., Stevenson, A. E., et al. (2005). Mass screening for antimicrobial resistant Escherichia coli in dairy cows in northern New South Wales. Australian Veterinary Journal, 83, 688–694.

    Article  CAS  Google Scholar 

  • Koike, S., Krapac, I. G., Oliver, H. D., Yannarell, A. C., Chee-Sanford, J. C., Aminov, R. I., et al. (2007). Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period. Applied and Environmental Microbiology, 73, 4813–4823.

    Article  CAS  Google Scholar 

  • Kumar, A., & Schweizer, H. P. (2005). Bacterial resistance to antibiotics: Active efflux and reduced uptake. Advanced Drug Deliver Reviews, 57, 1486–1513.

    Article  CAS  Google Scholar 

  • Levy, S. B., Fitzgerald, G. B., & Macone, A. B. (1976). Spread of antibiotic-resistant plasmids from chicken to chicken and from chicken to man. Nature, 260, 40–42.

    Article  CAS  Google Scholar 

  • Lorenz, M. G., Reipschlager, K., & Wackernagel, W. (1992). Plasmid transformation of naturally competent Acinetobacter calcoaceticus in nonsterile soil extract and groundwater. Archives of Microbiology, 157, 355–360.

    Article  CAS  Google Scholar 

  • Mackie, R. I., Koike, S., Krapac, I., Chee-Sanford, J., Maxwell, S., & Aminov, R. I. (2006). Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities. Animal Biotechnology, 17, 157–176.

    Article  CAS  Google Scholar 

  • Mckeon, D. M., Calabrese, J. P., & Bissonnette, G. K. (1995). Antibiotic-resistant Gram-negative bacteria in rural groundwater supplies. Water Research, 29, 1902–1908.

    Article  CAS  Google Scholar 

  • Meals, D. W., & Braun, D. C. (2006). Demonstration of methods to reduce E-coli runoff from dairy manure application sites. Journal of Environmental Quality, 35, 1088–1100.

    Article  CAS  Google Scholar 

  • Mirzaagha, P., Louie, M., Read, R. R., Sharma, R., Yanke, L. J., Topp, E., et al. (2009). Characterization of tetracycline- and ampicillin-resistant Escherichia coli isolated from the feces of feedlot cattle over the feeding period. Canadian Journal of Microbiology, 55, 750–761.

    Article  CAS  Google Scholar 

  • Monaghan, R. M., de Klein, C. A. M., & Muirhead, R. W. (2008). Prioritisation of farm scale remediation efforts for reducing losses of nutrients and faecal indicator organisms to waterways: A case study of New Zealand dairy farming. Journal of Environmental Management, 87, 609–622.

    Article  CAS  Google Scholar 

  • Nikolich, M. P., Hong, G., Shoemaker, N. B., & Salyers, A. A. (1994). Evidence for natural horizontal transfer of Tetq between bacteria that normally colonize humans and bacteria that normally colonize livestock. Applied and Environmental Microbiology, 60, 3255–3260.

    CAS  Google Scholar 

  • Oliver, D. M., Page, T., Heathwaite, A. L., & Haygarth, P. M. (2010). Re-shaping models of E. coli population dynamics in livestock faeces: Increased bacterial risk to humans? Environment International, 36, 1–7.

    Article  Google Scholar 

  • Parveen, S., Lukasik, J., Scott, T. M., Tamplin, M. L., Portier, K. M., Sheperd, S., et al. (2006). Geographical variation in antibiotic resistance profiles of Escherichia coli isolated from swine, poultry, beef and dairy cattle farm water retention ponds in Florida. Journal of Applied Microbiology, 100, 50–57.

    Article  CAS  Google Scholar 

  • Patterson, A. J., Colangeli, R., Spigaglia, P., & Scott, K. P. (2007). Distribution of specific tetracycline and erythromycin resistance genes in environmental samples assessed by macroarray detection. Environmental Microbiology, 9, 703–715.

    Article  CAS  Google Scholar 

  • Pei, R. T., Kim, S. C., Carlson, K. H., & Pruden, A. (2006). Effect of River Landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Research, 40, 2427–2435.

    Article  CAS  Google Scholar 

  • Ray, K. A., Warnick, L. D., Mitchell, R. M., Kaneene, J. B., Ruegg, P. L., Wells, S. J., et al. (2006). Antimicrobial susceptibility of Salmonella from organic and conventional dairy farms. Journal of Dairy Science, 89, 2038–2050.

    Article  CAS  Google Scholar 

  • Reddy, K. R., Khaleel, R., & Overcash, M. R. (1981). Behavior and transport of microbial pathogens and indicator organisms in soils treated with organic wastes. Journal of Environmental Quality, 10, 255–266.

    Article  Google Scholar 

  • Sapkota, A. R., Curriero, F. C., Gibson, K. E., & Schwab, K. J. (2007). Antibiotic-resistant enterococci and fecal indicators in surface water and groundwater impacted by a concentrated swine feeding operation. Environmental Health Perspectives, 115, 1040–1045.

    Article  CAS  Google Scholar 

  • Sato, K., Bartlett, P. C., Kaneene, J. B., & Downes, F. P. (2004). Comparison of prevalence and antimicrobial susceptibilities of Campylobacter spp. isolates from organic and conventional dairy herds in Wisconsin. Applied and Environmental Microbiology, 70, 1442–1447.

    Article  CAS  Google Scholar 

  • Sato, K., Bartlett, P. C., & Saeed, M. A. (2005). Antimicrobial susceptibility of Escherichia coli isolates from dairy farms using organic versus conventional production methods. Journal of the American Veterinary Medical Association, 226, 589–594.

    Article  CAS  Google Scholar 

  • Sayah, R. S., Kaneene, J. B., Johnson, Y., & Miller, R. (2005). Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human septage, and surface water. Applied and Environmental Microbiology, 71, 1394–1404.

    Article  CAS  Google Scholar 

  • Sinton, L. W., Braithwaite, R. R., Hall, C. H., & Mackenzie, M. L. (2007). Survival of indicator and pathogenic bacteria in bovine feces on pasture. Applied and Environmental Microbiology, 73, 7917–7925.

    Article  CAS  Google Scholar 

  • Smith, D. L., Harris, A. D., Johnson, J. A., Silbergeld, E. K., & Morris, J. G. (2002). Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proceedings of the National Academy of Sciences of the United States of America, 99, 6434–6439.

    Article  CAS  Google Scholar 

  • Soupir, M. L., Mostaghimi, S., & Lou, J. (2008). Die-off of E. coli and Enterococci in dairy cowpats. Transactions of the ASABE, 51, 1987–1996.

    Google Scholar 

  • Storteboom, H. N., Kim, S. C., Doesken, K. C., Carlson, K. H., Davis, J. G., & Pruden, A. (2007). Response of antibiotics and resistance genes to high-intensity and low-intensity manure management. Journal of Environmental Quality, 36, 1695–1703.

    Article  CAS  Google Scholar 

  • US EPA. (2000). Improved enumeration methods for the recreational water quality indicators: Enterococci and Escherichia coli. http://www.epa.gov/nerlcwww/RecManv.pdf, p. 52.

  • USDA. (2010). USDA National Agricultural Statistics Service—Quick Stats. http://www.nass.usda.gov/Data_and_Statistics/Quick_Stats/index.asp#top.

  • van Essen-Zandbergen, A., Smith, H., Veldman, K., & Mevius, D. (2007). Occurrence and characteristics of class 1, 2 and 3 integrons in Escherichia coli, Salmonella and Campylobacter spp. in The Netherlands. The Journal of Antimicrobial Chemotherapy, 59, 746–750.

    Article  Google Scholar 

  • Van Kessel, J. S., Pachepsky, Y. A., Shelton, D. R., & Karns, J. S. (2007). Survival of Escherichia coli in cowpats in pasture and in laboratory conditions. Journal of Applied Microbiology, 103, 1122–1127.

    Article  Google Scholar 

  • Varga, C., Rajic, A., McFall, M. E., Avery, B. P., Reid-Smith, R. J., Deckert, A., et al. (2008). Antimicrobial resistance in generic Escherichia coli isolated from swine fecal samples in 90 Alberta finishing farms. Canadian Journal of Veterinary Research-Revue Canadienne De Recherche Veterinaire, 72, 175–180.

    CAS  Google Scholar 

  • Varga, C., Rajic, A., McFall, M. E., Reid-Smith, R. J., Deckert, A. E., Checkley, S. L., et al. (2009). Associations between reported on-farm antimicrobial use practices and observed antimicrobial resistance in generic fecal Escherichia coli isolated from Alberta finishing swine farms. Preventive Veterinary Medicine, 88, 185–192.

    Article  Google Scholar 

  • Walsh, C. (2003). Antibiotics: Actions, origins, resistance (p. 335). Washington, DC: ASM.

    Google Scholar 

  • Wang, L., Mankin, K. R., & Marchin, G. L. (2004). Survival of fecal bacteria in dairy cow manure. Transactions of the Asae, 47, 1239–1246.

    Google Scholar 

  • World Health Organization. (2003). 1st Joint FAO/OIE/WHO expert workshop on non-human antimicrobial usage and antimicrobial resistance: Scientific assessment. http://www.who.int/foodsafety/publications/micro/en/amr.pdf, Geneva.

Download references

Acknowledgment

We are grateful to two anonymous reviewers whose comments and suggestions improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangping Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walczak, J.J., Xu, S. Manure as a Source of Antibiotic-Resistant Escherichia coli and Enterococci: a Case Study of a Wisconsin, USA Family Dairy Farm. Water Air Soil Pollut 219, 579–589 (2011). https://doi.org/10.1007/s11270-010-0729-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0729-x

Keywords

Navigation