Skip to main content
Log in

The Antitranspirant Di-1-p-menthene, a Potential Chemical Protectant of Ozone Damage to Plants

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A study was conducted to evaluate the effect of pinolene-based film-forming Vapor Gard (VG) emulsion (di-1-p-menthene), a commercial antitranspirant, on the response of the sensitive bean (Phaseolus vulgaris cv. Pinto) plants to realistic ozone fumigations. Plants treated with the chemical were significantly less damaged in comparison with untreated controls when exposed to as much as 150 ppb of ozone in the atmosphere for 4 h. In unozonated plants, photosynthesis as well as stomatal conductance was significantly depressed by the antitranspirant. In VG-treated individuals, (1) visible injury is strongly reduced; (2) membrane damage is counteracted; (3) photosynthetic activity is unchanged, as well as the stomatal conductance and the store of CO2 in substomatal chamber; (4) F v/F m and the other parameters of chlorophyll fluorescence reveal a stability of the photochemical apparatus; and (v) antioxidant defence is not stimulated. Unexpectedly, our results highlighted a dramatic difference between the protective effects towards ozone damage induced by VG, depending on its mode of distribution. As reported above, when entire plants (“both leaves”) are treated or untreated with VG, those individuals wherein VG was not applied showed severe alterations in phenomenological, biochemical and ecophysiological parameters investigated due to ozone toxicity. This is not true in the cases where “single primary leaves” or selected regions (“half leaves”) are treated with VG. Even if visible injury is present after ozone fumigation, physiological parameters, such as A max and G w, in ozonated and VG-treated single leaves and half leaves are similar to unfumigated controls. Similar results were obtained for chlorophyll fluorescence parameters. A membrane-protective action is observed in half-leaves treatment. It appears that the presence of regions (single leaves or half leaves), which are treated with VG, modifies the behaviour to ozone of untreated regions. Possible explanations of the observed phenomenon are discussed. The antitranspirant di-1-p-menthene proved to be a low-cost, low-technology tool for assessing ozone injury in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agusti, M., Almela, V., Zaragoza, S., Gazzola, R., & Primo-Millo, E. (1997). Alleviation of peel-pitting of ‘fortune’ Mandarin by the polyterpene pinolene. Journal of Horticultural Science, 72, 653–658.

    Google Scholar 

  • Archambault, D. J., Slaski, J. J., & Li, X. (2000). Ozone protection in plants. The potential use of chemical protectants to measure oxidant damage in Alberta crops. Edmonton: Alberta Environment.

    Google Scholar 

  • Bensadoun, A., & Weinstein, D. (1976). Assay of proteins in the presence of interfering materials. Analytical Biochemistry, 70, 241–250.

    Article  CAS  Google Scholar 

  • Blazques, C. H., Vidyarthi, A. D., Sheehan, T. D., Bennet, M. J., & McGrew, G. T. (1970). Effect of pinolene (β-pinene polymer) on carbaryl foliar residues. Journal of Agricultural and Food Chemistry, 18, 681–684.

    Article  Google Scholar 

  • Bolhar-Nordernkampf, H. R., Long, S. P., Baker, N. R., Oquist, G., Schreiber, U., & Lecner, E. G. (1989). Chlorophyll fluorescence as a probe of the photosynthetic competence of the leaves in the field: A review of current instrumentation. Functional Ecology, 3, 497–514.

    Article  Google Scholar 

  • Booker, F., Muntifering, R., McGrath, M., Burkey, K., Decoteau, D., Fiscus, E., et al. (2009). The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. Journal of Integrative Plant Biology, 51, 337–351.

    Article  CAS  Google Scholar 

  • Brilli, F., Barta, C., Fortunati, A., Lerdau, M., Loreto, F., & Centritto, M. (2007). Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. The New Phytologist, 175, 244–254.

    Article  CAS  Google Scholar 

  • Brunschön-Harti, S., Fangmeier, A., & Jäger, H.-J. (1995). Effects of ethylenediurea and ozone on the antioxidative systems in beans (Phaseolus vulgaris L.). Environmental Pollution, 90, 95–103.

    Article  Google Scholar 

  • Carnahan, J., Jenner, E., & Wat, E. (1978). Prevention of ozone injury to plants by a new protectant chemical. Phytopathology, 68, 1225–1229.

    Article  CAS  Google Scholar 

  • Cheng, G. W., & Breen, P. J. (1991). Activity of phenylalanine ammonia-lyase (PAL) and concentration of anthocyanins and phenolics in developing strawberry fruit. Journal of the American Horticultural Society, 116, 865–869.

    CAS  Google Scholar 

  • Delfine, S., Csiky, O., Seufert, G., & Loreto, F. (2000). Fumigation with exogenous monoterpenes of a non-isoprenoid-emitting oak (Quercus suber): Monoterpene acquisition, translocation, and effect on the photosynthetic properties at high temperatures. The New Phytologist, 146, 27–36.

    Article  CAS  Google Scholar 

  • European Environment Agency. (2009). Air pollution by ozone across Europe in summer 2008. EEA technical report no. 2/2009, www.eea.eu.int.

  • Elfving, D. C., Gilbert, M. D., Egferton, L. J., Wilde, M. H., & Lisk, D. J. (1976). Antioxidant and antitranspirant protection of apple foliage against ozone injury. Bulletin of Environmental Contamination and Toxicology, 15, 336–341.

    Article  CAS  Google Scholar 

  • El-Sayed, S. F. (1991). Growth and yield of snap bean under cold conditions as affected by growth regulators and pinolene. Scientia Horticulturae, 47, 193–200.

    Article  CAS  Google Scholar 

  • Francini, A., Galleschi, L., Saviozzi, F., Pinzino, C., Izzo, R., Sgherri, C., et al. (2006). Enzymatic and non-enzymatic protective mechanisms in recalcitrant seeds of Araucaria bidwillii subjected to desiccation. Plant Physiology and Biochemistry, 44, 556–563.

    Article  CAS  Google Scholar 

  • Francini, A., Nali, C., Pellegrini, E., & Lorenzini, G. (2008). Characterization and isolation of some genes of the shikimate pathway in sensitive and resistant Centaurea jacea plants after ozone exposure. Environmental Pollution, 151, 272–279.

    Article  CAS  Google Scholar 

  • Francini, A., Nali, C., Picchi, V., & Lorenzini, G. (2007). Metabolic changes in white clover clones exposed to ozone. Environmental and Experimental Botany, 60, 11–19.

    Article  CAS  Google Scholar 

  • Gale, J., & Hagan, R. M. (1966). Plant antitranspirants. Annual Review of Plant Physiology, 17, 269–282.

    Article  CAS  Google Scholar 

  • Gorinsteina, S., Zachwiejab, Z., Katricha, E., Pawlzikc, E., Haruennkitd, R., Trakhtenberge, S., et al. (2004). Comparison of the contents of the main antioxidant compounds and the antioxidant activity of white grapefruit and his new hybrid. Lebensmittel-Wissenschaft und Technologie, 37, 337–343.

    Article  Google Scholar 

  • Guidi, L., Nali, C., Ciompi, S., Lorenzini, G., & Soldatini, G. F. (1997). The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars. Journal of Experimental Botany, 48, 173–179.

    Article  CAS  Google Scholar 

  • Hagiladi, A., & Ziv, O. (1986). Use of antitranspirants for control of powdery mildew on field grown roses. Journal of Environmental Horticulture, 4, 65–68.

    CAS  Google Scholar 

  • Harborne, J. B. (1980). Plant phenolics. In E. A. Bell & B. V. Charlwood (Eds.), Encyclopedia of plant physiology (pp. 329–402). Berlin: Springer.

    Google Scholar 

  • Heagle, A. S. (1989). Ozone and crop yield. Annual Review of Phytopathology, 27, 397–423.

    Article  CAS  Google Scholar 

  • Heath, R. L. (1980). Initial events in injury to plants by air pollutants. Annual Review of Plant Physiology, 31, 395–431.

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  Google Scholar 

  • Hill, A. C., Pack, M. R., Treshow, M., Downs, R. J., & Transtrum, L. G. (1961). Plant injury induced by ozone. Phytopathology, 51, 356–363.

    CAS  Google Scholar 

  • Hummel, R. H. (1990). Water relations of container grown woody and herbaceous plants following antitranspirant sprays. HortScience, 25, 772–775.

    CAS  Google Scholar 

  • Iriti, M., Picchi, V., Rossoni, M., Gomarasca, S., Ludwig, N., Gargano, M., et al. (2009). Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environmental and Experimental Botany, 66, 493–500.

    Article  CAS  Google Scholar 

  • Kegge, W., & Pierik, R. (2010). Biogenic volatile organic compounds and plant competition. Trends in Plant Science, 15, 126–132.

    Article  CAS  Google Scholar 

  • Kesselmeier, J., & Staudt, M. (1999). Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. Journal of Atmospheric Chemistry, 33, 23–88.

    Article  CAS  Google Scholar 

  • Klingaman, G. L., & Link, C. B. (1975). Reduction of air pollution injury to leaves of Chrysanthemum morifolium using tolerant cultivars and chemical protectants. Journal of the American Society of Horticultural Sciences, 100, 173–175.

    CAS  Google Scholar 

  • Knapp, C. E., & Fieldhouse, D. J. (1970). Alar and Folicote sprays for reducing ozone injury on four solanaceous genera. HortScience, 5, 33–340.

    Google Scholar 

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic membranes. Methods in Enzymology, 148, 350–382.

    Article  CAS  Google Scholar 

  • Loreto, F., Barta, C., Brilli, F., & Nogues, I. (2006). On the induction of volatile organic compounds emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant, Cell & Environment, 29, 1820–1828.

    Article  CAS  Google Scholar 

  • Loreto, F., Mannozzi, M., Maris, C., Nascetti, P., Ferranti, F., & Pasqualini, S. (2001). Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiology, 126, 993–1000.

    Article  CAS  Google Scholar 

  • Loreto, F., Pinelli, P., Manes, F., & Kollist, H. (2004). Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiology, 24, 361–367.

    CAS  Google Scholar 

  • Loreto, F., & Schnitzler, J.-P. (2010). Abiotic stresses and induced BVOCs. Trends in Plant Science, 15, 154–166.

    Article  CAS  Google Scholar 

  • Maddison, J., Lyons, T., Plochl, M., & Barnes, J. (2002). Hydroponically cultivated radish fed l-galactono-1,4-lactone exhibit increased tolerance to ozone. Planta, 214, 383–391.

    Article  CAS  Google Scholar 

  • Manning, W. J. (2000). Use of protective chemicals to assess the effects of ambient ozone on plants. In S. B. Agrawal & H. Agrawal (Eds.), Environmental pollution and plant responses (pp. 247–259). Boca Raton: Lewis.

    Google Scholar 

  • Middleton, J. T., Kendrick, J. B., & Darley, E. F. (1953). Olefinic peroxide injury to bean as influenced by age, variety, chemical addition and toxicant dosage. Phytopathology, 43, 588–561.

    Google Scholar 

  • Murphy, J. J., Delucchi, M. A., McCubbin, D. R., & Kim, H. J. (1999). The cost of crop damage caused by ozone air pollution from motor vehicles. Journal of Environmental Management, 55, 273–289.

    Article  Google Scholar 

  • Ormrod, D. P., & Adedipe, N. O. (1974). Protecting horticultural plants from atmospheric pollutants: A review. HortScience, 9, 108–111.

    CAS  Google Scholar 

  • Paolacci, A. R., D’Ovidio, R., Marabottini, R., Nali, C., Lorenzini, G., Abenavoli, M. R., et al. (2001). Differential induction by ozone of phenylalanine ammonia-lyase, chalcone synthase and chalcone isomerase genes in sensitive and resistant bean cultivars. Australian Journal of Plant Physiology, 28, 425–428.

    CAS  Google Scholar 

  • Pandey, J., & Agrawal, M. (1993). Protection of plants against air pollutants: Role of chemical protectants. Journal of Environmental Management, 37, 163–174.

    Article  Google Scholar 

  • Plaut, Z., Magril, Y., & Kedem, U. (2004). A new film forming material, which reduces water vapour conductance more than CO2 fixation in several horticultural plants. Journal Horticultural Science, 79, 528–532.

    Google Scholar 

  • PPDB. (2009). Pesticide properties data base. www.sitem.herts.ac.uk/iupac.

  • Roark, R. S., Bowen, K. L., & Behe, B. K. (2000). Management of blackspot on three rose cultivars using antitranspirants in combination with chlorothalonil. Journal of Environmental Horticulture, 18, 137–141.

    Google Scholar 

  • Rohacek, K. (2002). Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning, and mutual relationships. Photosynthetica, 40, 13–29.

    Article  CAS  Google Scholar 

  • Royal Society. (2008). Ground-level ozone in the 21st century: Future trends, impacts and policy implications. London: The Royal Society. www.royalsociety.org.

    Google Scholar 

  • Sandler, H. A. (1998). Use of an antitranspirant to minimize winter injury on nonflooded cranberry bogs. HortScience, 33, 644–646.

    CAS  Google Scholar 

  • Schreiber, U., Schliwa, U., & Bilger, W. (1986). Continuous recording of photochemical and non-photochemical quenching with a new type of modulation fluorometer. Photosynthesis Research, 10, 51–62.

    Article  CAS  Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics and phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology & Viticulture, 16, 144–148.

    CAS  Google Scholar 

  • Taylor, G. S., & Rich, S. (1962). Antiozonant-treated cloth protects tobacco from fleck. Science, 135, 928.

    Article  CAS  Google Scholar 

  • Townsend, B. B. (1965). Reduction of ozone damage to bean leaves by response to mechanical injury. Bios, 36, 126–130.

    CAS  Google Scholar 

  • Van Dingenen, R., Dentener, F. J., Raes, F., Krol, M. C., Emberson, L., & Cofala, J. (2009). The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmospheric Environment, 43, 604–618.

    Article  Google Scholar 

  • Vickers, C. E., Gershenzon, J., Lerdau, M. T., & Loreto, F. (2010). A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chemical Biology, 5, 283–291.

    Article  Google Scholar 

  • Von Caemmerer, S., & Farquhar, G. D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaf. Planta, 153, 376–387.

    Article  Google Scholar 

  • Weller, S. C., & Ferree, D. C. (1978). Effect of pinolene-based anti-transpirant on fruit growth, net photosynthesis, transpiration, and shoot growth of ‘golden delicious’ apple trees. Journal of the American Society for Horticultural Science, 103, 17–19.

    CAS  Google Scholar 

  • Wolley, J. T. (1967). Relative permeabilities of plastic films to water and carbon dioxide. Plant Physiology, 42, 641–643.

    Article  Google Scholar 

  • Yarwood, C. E., & Middleton, J. T. (1954). Smog injury and rust infection. Plant Physiology, 29, 393–395.

    Article  CAS  Google Scholar 

  • Ziv, O., & Frederiksen, R. A. (1983). Control of foliar diseases with epidermal coating materials. Plant Disease, 67, 212–214.

    Article  Google Scholar 

  • Ziv, O., & Frederiksen, R. A. (1987). The effect of film-forming anti-transpirants on leaf rust and powdery mildew incidence on wheat. Plant Pathology, 36, 242–245.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Lorenzini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francini, A., Lorenzini, G. & Nali, C. The Antitranspirant Di-1-p-menthene, a Potential Chemical Protectant of Ozone Damage to Plants. Water Air Soil Pollut 219, 459–472 (2011). https://doi.org/10.1007/s11270-010-0720-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0720-6

Keywords

Navigation