Skip to main content
Log in

Natural Gradient Drift Tests for Assessing the Feasibility of In Situ Aerobic Cometabolism of Trichloroethylene and Evaluating the Microbial Community Change

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The objective of this study is to develop a method for using the single-well natural gradient drift test (SWNGDT) in the field to assess in situ aerobic cometabolism of trichloroethylene (TCE) and to analyze microbial community changes. The SWNGDT was performed in a monitoring well installed in a TCE-contaminated aquifer in Wonju, South Korea. The natural gradient drift biostimulation test (NGDBT) and surrogate test (NGDST) were performed by injecting dissolved solutes (bromide (a tracer), toluene (a growth substrate), ethylene (a nontoxic surrogate substrate to probe for TCE transformation activity), dissolved oxygen (DO, an electron acceptor), and nitrate (nutrient)) into the aquifer. Push–pull blocking tests (PPBT) were also performed to examine whether the monooxygenase of toluene oxidizers is involved in the degradation of toluene and the transformation of ethylene. Through the NGDBT, NGDST, and PPBT, we confirmed that the addition of toluene and oxygen in these field tests stimulated indigenous toluene utilizers to cometabolize aerobically TCE, with the following results: (1) the observed simultaneous utilization of toluene and DO; (2) the transformation of ethylene to ethylene oxide and propylene to propylene oxide; and (3) the transformation of TCE. Furthermore, the results of restriction fragment length polymorphism suggested that the microbial community shifts and the microbes capable of transforming TCE are stimulated by injecting the growth substrate, toluene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Braker, G., Zhou, J. Z., Wu, L. Y., Devol, A. H., & Tiedje, J. M. (2000). Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities. Applied and Environmental Microbiology, 66, 2096–2104.

    Article  CAS  Google Scholar 

  • Brosius, J., Palmer, M. L., Kennedy, P. J., & Noller, H. F. (1978). Complete nucleotide sequence of a 16s ribosomal RNA gene from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 75, 4801–4805.

    Article  CAS  Google Scholar 

  • Connon, S. A., Tovanabootr, A., Dolan, M., Vergin, K., Giovannoni, S. J., & Semprini, L. (2005). Bacterial community composition determined by culture independent and dependant methods during propane stimulated bioremediation in trichloroethene contaminated groundwater. Environmental Microbiology, 7, 165–178.

    Article  CAS  Google Scholar 

  • Dabrock, B., Kesseler, M., Averhoff, B., & Gottschalk, G. (1994). Identification and characterization of a transmissible linear plasmid from rhodococcus-erythropolis Bd2 that encodes isopropylbenzene and trichloroethene catabolism. Applied and Environmental Microbiology, 60, 853–860.

    CAS  Google Scholar 

  • Davidov, Y., & Jurkevitch, E. (2004). Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax-Peredibacter clade as Bacteriovoracaceae fam. nov. International Journal of Systematic and Evolutionary Microbiology, 54, 1439–1452.

    Article  CAS  Google Scholar 

  • Environment, K.M.o. (1998) Annual groundwater survey.

  • Fan, S. F., & Scow, K. M. (1993). Biodegradation of trichloroethylene and toluene by indigenous microbial-populations in soil. Applied and Environmental Microbiology, 59, 1911–1918.

    CAS  Google Scholar 

  • Folsom, B. R., Chapman, P. J., & Pritchard, P. H. (1990). Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Applied and Environmental Microbiology, 56, 1279–1285.

    CAS  Google Scholar 

  • Fox, B. G., Borneman, J. G., Wackett, L. P., & Lipscomb, J. D. (1990). Haloalkene oxidation by the soluble methane monooxygenase from methylosinus-trichosporium Ob3b—mechanistic and environmental implications. Biochemistry, 29, 6419–6427.

    Article  CAS  Google Scholar 

  • Fuller, M. E., Mu, D. Y., & Scow, K. M. (1995). Biodegradation of trichloroethylene and toluene by indigenous microbial-populations in vadose sediments. Microbial Ecology, 29, 311–325.

    Article  CAS  Google Scholar 

  • Gibson, D. T., Hensley, M., Yoshioka, H., & Mabry, T. J. (1970). Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. Biochemistry, 9, 1626–1630.

    Article  CAS  Google Scholar 

  • Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Heald, S., & Jenkins, R. O. (1994). Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida. Applied and Environmental Microbiology, 60, 4634–4637.

    CAS  Google Scholar 

  • Hopkins, G. D., & Mccarty, P. L. (1995). Field-evaluation of in-situ aerobic cometabolism of trichloroethylene and 3 dichloroethylene isomers using phenol and toluene as the primary substrates. Environmental Science & Technology, 29, 1628–1637.

    Article  CAS  Google Scholar 

  • Hopkins, G. D., Munakata, J., Semprini, L., & Mccarty, P. L. (1993). Trichloroethylene concentration effects on pilot field-scale in-situ groundwater bioremediation by phenol-oxidizing microorganisms. Environmental Science & Technology, 27, 2542–2547.

    Article  CAS  Google Scholar 

  • Hopkins, G. D., Semprini, L., & Mccarty, P. L. (1993). Microcosm and in-situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms. Applied and Environmental Microbiology, 59, 2277–2285.

    CAS  Google Scholar 

  • Humphries, J. A., Ashe, A. M. H., Smiley, J. A., & Johnston, C. G. (2005). Microbial community structure and trichloroethylene degradation in groundwater. Canadian Journal of Microbiology, 51, 433–439.

    Article  CAS  Google Scholar 

  • Istok, J. D., Humphrey, M. D., Schroth, M. H., Hyman, M. R., & OReilly, K. T. (1997). Single-well, “push-pull” test for in situ determination of microbial activities. Ground Water, 35, 619–631.

    Article  CAS  Google Scholar 

  • Kim, Y., Istok, J. D., & Semprini, L. (2004). Push-pull tests for assessing in situ aerobic cometabolism. Ground Water, 42, 329–337.

    Article  CAS  Google Scholar 

  • Kim, Y., Istok, J. D., & Semprini, L. (2006). Push-pull tests evaluating in situ aerobic cometabolism of ethylene, propylene, and cis-1, 2-dichloroethylene. Journal of Contaminant Hydrology, 82, 165–181.

    Article  CAS  Google Scholar 

  • Kim, Y., Istok, J. D., & Semprini, L. (2008). Single-well, gas-sparging tests for evaluating the in situ aerobic cometabolism of cis-1, 2-dichloroethene and trichloroethene. Chemosphere, 71, 1654–1664.

    Article  CAS  Google Scholar 

  • Krumme, M. L., Timmis, K. N., & Dwyer, D. F. (1993). Degradation of trichloroethylene by Pseudomonas cepacia G4 and the constitutive mutant strain G4-5223 Pr1 in aquifer microcosms. Applied and Environmental Microbiology, 59, 2746–2749.

    CAS  Google Scholar 

  • Kumar, S., Tamura, K., Jakobsen, I. B., & Nei, M. (2001). MEGA2: molecular evolutionary genetics analysis software. Bioinformatics, 17, 1244–1245.

    Article  CAS  Google Scholar 

  • Leahy, J. G., Byrne, A. M., & Olsen, R. H. (1996). Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria. Applied and Environmental Microbiology, 62, 825–833.

    CAS  Google Scholar 

  • Lee, H. W., Lee, S. Y., Lee, J. W., Park, J. B., Choi, E. S., & Park, Y. K. (2002). Molecular characterization of microbial community in nitrate-removing activated sludge. FEMS Microbiology Ecology, 41, 85–94.

    Article  CAS  Google Scholar 

  • Li, A. J., Yang, S. F., Li, X. Y., & Gu, J. D. (2008). Microbial population dynamics during aerobic sludge granulation at different organic loading rates. Water Research, 42, 3552–3560.

    Article  CAS  Google Scholar 

  • Li, S. Y., & Wackett, L. P. (1992). Trichloroethylene oxidation by toluene dioxygenase. Biochemical and Biophysical Research Communications, 185, 443–451.

    Article  CAS  Google Scholar 

  • Little, C. D., Palumbo, A. V., Herbes, S. E., Lindstrom, M. E., Tyndall, R. L., & Gilmer, P. J. (1998). Trichloroethylene biodegradation by pure cultures of a methane-oxidizing bacterium. Applied and Environmental Microbiology, 54, 951–956.

    Google Scholar 

  • Maidak, B. L., Cole, J. R., Parker, C. T., Garrity, G. M., Larsen, N., Li, B., et al. (1999). A new version of the RDP (Ribosomal Database Project). Nucleic Acids Research, 27, 171–173.

    Article  CAS  Google Scholar 

  • McCarty, P. L., Goltz, M. N., Hopkins, G. D., Dolan, M. E., Allan, J. P., Kawakami, B. T., et al. (1998). Full scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environmental Science & Technology, 32, 88–100.

    Article  CAS  Google Scholar 

  • Mu, D. Y., & Scow, K. M. (1994). Effect of trichloroethylene (Tce) and toluene concentrations on Tce and toluene biodegradation and the population-density of Tce and toluene degraders in soil. Applied and Environmental Microbiology, 60, 2661–2665.

    CAS  Google Scholar 

  • Rajagopal, R. (1986). Conceptual design for a groundwater quality monitoring strategy. Environmental Professional, 244–264.

  • Semprini, L. (1997). Strategies for the aerobic co-metabolism of chlorinated solvents. Current Opinion in Biotechnology, 8, 296–308.

    Article  CAS  Google Scholar 

  • Shields, M. S., & Reagin, M. J. (1992). Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene. Applied and Environmental Microbiology, 58, 3977–3983.

    CAS  Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24, 4876–4882.

    Article  Google Scholar 

  • Timmins, B., Dolan, M., & Semprini, L. (2001). Aerobic cometabolic transformation of trichloroethylene and cis-dichloroethylene in propane fed aquifer microcosms. In Situ Aeration and Aerobic Remediation, 6, 179–185.

    Google Scholar 

  • Tovanabootr, A., & Semprini, L. (1998). Comparison of TCE transformation abilities by methane and propane-utilizers. Bioremediation Journal, 2, 105–124.

    Article  CAS  Google Scholar 

  • Tovanabootr, A., Semprini, L., Dolan, M. E., Azizian, M., Magar, V. S., DeBacker, D., et al. (2001). Cometabolic air sparging field demonstration with propane to remediate trichloroethene and cis-dichloroethene. In Situ Aeration and Aerobic Remediation, 6, 145–153.

    Google Scholar 

  • Whited, G. M., & Gibson, D. T. (1991). Toluene-4-monooxygenase, a 3-component enzyme-system that catalyzes the oxidation of toluene to para-cresol in Pseudomonas mendocina Kr1. Journal of Bacteriology, 173, 3010–3016.

    CAS  Google Scholar 

  • Yeager, C. M., Bottomley, P. J., Arp, D. J., & Hyman, M. R. (1999). Inactivation of toluene 2-monooxygenase in Burkholderia cepacia G4 by alkynes. Applied and Environmental Microbiology, 65, 632–639.

    CAS  Google Scholar 

  • Yeh, W. K., Gibson, D. T., & Liu, T. N. (1977). Toluene dioxygenase—multicomponent enzyme-system. Biochemical and Biophysical Research Communications, 78, 401–410.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a research grant from the Korea Ministry of Environment (2003–2004). This article has not been reviewed by the agency, and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, C., Kim, N., Park, H. et al. Natural Gradient Drift Tests for Assessing the Feasibility of In Situ Aerobic Cometabolism of Trichloroethylene and Evaluating the Microbial Community Change. Water Air Soil Pollut 219, 353–364 (2011). https://doi.org/10.1007/s11270-010-0712-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0712-6

Keywords

Navigation