Skip to main content

Evaluation of the Fate of Ciprofloxacin and Amoxicillin in Domestic Wastewater

Abstract

The main objective of this study was to evaluate the contribution of sorption to the removal of two commonly used antibiotics (amoxicillin and ciprofloxacin) from wastewater. These antibiotics are excreted in large quantities with more than 75% of them being unmetabolized and are therefore likely to end up in domestic wastewater in significant quantities. The specific objectives were to determine the sorption behavior in synthetic wastewater (SWW), the effect of pH and contribution of microbial surfaces, to the sorption of these antibiotics. The SWW, adjusted to various pH levels, was used and sorption kinetics conducted at 100 and 250 μg L−1 concentrations. Adsorption isotherms were determined at different pH levels. The SWW (pH 6.6) was inoculated with Rhodococcus sp. B30 strain to determine the contribution of microbial surfaces to sorption. Generally, both antibiotics revealed a decrease in sorption with pH increase, suggesting that lowering the solution pH of the wastewater may reduce their amounts in wastewater solution. Comparatively, ciprofloxacin exhibited higher sorption than amoxicillin. The sorption distribution coefficient (K d) values for ciprofloxacin ranged from 0.4356 to 0.8902 L g−1, with pH = 5.5 exhibiting the highest K d, while that for amoxicillin ranged from 0.1582 to 0.3858 L g−1 with the highest K d at pH = 3.5. There was a significant difference (p < 0.05) in K d values between various pH levels for both antibiotics except between the pH of 5.5 and 6.6. Both antibiotics were not degraded within 48 h by Rhodococcus sp. B30 strain. These results indicate that degradation may not be the major process of removal of compounds from wastewater treatment plants and hence the importance of sorption as an intervention technique.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Al-Ahmad, A., Daschner, F. D., & Kümmerer, K. (1999). Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of wastewater bacteria. Archives of Environmental Contamination and Toxicology, 37, 158–163.

    Article  CAS  Google Scholar 

  • Alexy, R., Kümpel, T., & Kümmerer, K. (2004). Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere, 57, 505–512.

    Article  CAS  Google Scholar 

  • Alvero, C. C. (1987). Antibiotic resistance of heterotrophic bacterial flora of two lakes. Systematic and Applied Microbiology, 9, 169–172.

    Google Scholar 

  • Behki, R. M., & Khan, S. U. (1994). Degradation of atrazine, propazine and simazine by Rhodococcus strain B-30. Journal of Agriculture and Food Chemistry, 42, 1237–1241.

    Article  CAS  Google Scholar 

  • Burhenne, J., Ludwig, M., Nikoloudis, P., & Spiteller, M. (1997). Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution. Primary photoproducts and half-lives. ESPR-Environ. Sci. Pollut. Res., 4, 10–15.

    Article  CAS  Google Scholar 

  • Burhenne, J., Ludwig, M., & Spiteller, M. (1997). Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution isolation and structural elucidation of polar photometabolites. ESPR-Environ. Sci. Pollut. Res., 4, 61–71.

    Article  CAS  Google Scholar 

  • Campeau, R. C., Gulli, L. F., & Graves, J. F. (1996). Drug resistance in Detroit river gram-negative bacilli. Microbios, 88, 205–212.

    CAS  Google Scholar 

  • Carballa, M., Omil, F., Lem, J. M., Llompart, M., García-Jares, C., Rodríguez, I., et al. (2004). Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research, 38, 2918–2926.

    Article  CAS  Google Scholar 

  • Carson, R. L. (1962). Silent Spring. Boston: Houghton Mifflin.

    Google Scholar 

  • Christian, T., Schneider, R. J., Farber, H. A., Skutlarek, D., Meyer, M. T., & Goldbach, H. E. (2003). Determination of antibiotic residues in manure, soil, and surface waters. Acta HydrochimHydrobiol, 31, 36–44.

    Article  CAS  Google Scholar 

  • Daughton, C. G. (2003). Pollution from the combined activities, actions, and behaviors of the public: pharmaceuticals and personal care products. NorCal SETAC News, 14(1), 5–15.

    Google Scholar 

  • Daughton, C. G., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: agents of subtle change? Environmental Health Perspectives, 107, 907–938.

    Article  CAS  Google Scholar 

  • Díaz-Cruz, M., de Alda, M. J. L., & Baceló, D. (2003). Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trends in Analytical Chemistry, 22(6), 340–351.

    Article  Google Scholar 

  • Esperanza, M., Suidan, M. T., Nishimura, F., Wang, Z. M., Sorial, G. A., Zaffiro, A., et al. (2004). Determination of sex hormones and nonylphenol ethoxylates in the aqueous matrixes of two pilot-scale municipal wastewater treatment plants. Environmental Science & Technology, 38(11), 3028–3035.

    Article  CAS  Google Scholar 

  • Fent, K., Weston, A. A., & Caminada, D. (2005). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76, 122–159.

    Article  Google Scholar 

  • García-Jares, C., Llompart, M., Polo, M., Salgado, C., Macías, S., & Cela, R. (2002). Optimisation of a solid-phase microextraction method for synthetic musk compounds in water. Journal of Chromatography, 963, 277–285.

    Article  Google Scholar 

  • Golet, E., Xifra, I., Siegrist, H., Alder, A., & Giger, W. (2003). Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environmental Science & Technology, 37, 3243–3249.

    Article  CAS  Google Scholar 

  • Gu, C., & Karthikeyan, K. G. (2005). Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environmental Science & Technology, 39(23), 9166–9173.

    Article  CAS  Google Scholar 

  • Hartmann, A., Golet, E. M., Gartiser, S., Alder, A. C., Koller, T., & Widmer, R. M. (1999). Primary DNA damage but not mutagenicity correlates with ciprofloxacin concentrations in German hospital wastewaters. Department of Health and Human Services, 36(2), 115.

    CAS  Google Scholar 

  • Heberer, T. (2002). Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of Hydrology, 266(3–4), 175–189.

    Article  CAS  Google Scholar 

  • Henninger, E., Herrel, M., Strehl, E., & Kummer, K. (2001). Emission of pharmaceuticals, contrast media, disinfectants, and AOX from hospitals, in pharmaceuticals in the environment. Sources, fate, effects and risks (pp. 29–41). Berlin: Springer.

    Google Scholar 

  • Jorgensen, S. E., & Halling-Sorensen, B. (2000). Drugs in the environment. Chemosphere, 40, 691–699.

    Article  CAS  Google Scholar 

  • Kümmerer, K. (2001). Drugs in the environment: Emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources—a review. Chemosphere, 45, 957–969.

    Article  Google Scholar 

  • Li, B., & Zhang, T. (2010). Biodegradation and adsorption of antibiotics in the activated sludge process. Environmental Science & Technology, 44, 3468–3473.

    Article  CAS  Google Scholar 

  • Martens, R., Wetzstein, H. G., Zadrazil, F., Capelari, M., Hoffmann, P., & Schmeer, M. (1996). Degradation of the fluoroquinolone enrofloxacin by wood-rotting fungi. Applied and Environmental Microbiology, 62, 4206–4209.

    CAS  Google Scholar 

  • Monteiro, S. C., & Boxall, A. B. A. (2009). Occurrence and fate of human pharmaceuticals in the environment. Reviews of Environmental Toxicology and Chemistry, 202, 53–154.

    Article  Google Scholar 

  • National Academy of Sciences. (2002). Biosolids applied to land: Advancing standards and practices (p. 368). Washington, DC: The National Academies.

    Google Scholar 

  • Nelson, J. M., Chiller, T. M., Powers, J. H., & Angulo, F. J. (2007). Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: A public health success story. Clinical Infectious Diseases, 44(7), 977–980.

    Article  CAS  Google Scholar 

  • Nwankwoala, A. U., Egiebor, N. O., & Nyavor, K. (2001). Enhanced biodegradation of methylhydrazine and hydrazine contaminated NASA wastewater in fixed-film bioreactor. Biodegradation, 12, 1–10.

    Article  CAS  Google Scholar 

  • Otker, H. M., & Akmehmet-Balcioglu, I. (2005). Adsorption and degradation of enrofloxacin, a veterinary antibiotic on natural zeolite. Journal of Hazardous Materials, 122, 251–258.

    Article  Google Scholar 

  • Petrovic, M., Gonzalez, S., & Barcelo, D. (2003). Analysis and removal of emerging contaminants in wastewater and drinking water. Trend in Analytical Chemistry., 22(10), 658–696.

    Google Scholar 

  • Raji, C., Shubha, K. P., & Anirudhan, T. S. (1997). Use of chemically modified sawdust in the removal of Pb (II) ions from aqueous media. Indian J Environ Hlth, 39(3), 230–238.

    CAS  Google Scholar 

  • Rao, M., & Bhole, A. G. (2001). Chromium removal by adsorption using fly ash and bagasse. Journal of Indian Water Works Association, XXXIII(1), 97–100.

    Google Scholar 

  • Riviere, J. E., Craigmill, A. L., & Sundlof, S. F. (1991). Handbook of comparative pharmacokinetics and residues of veterinary antimicrobials. Boca Raton: CRC.

    Google Scholar 

  • SAS Institute Inc. (2003). SAS OnlineDoc® 9.1, Cary, NC: SAS Institute, Inc.

  • Schäfer, A.I. & Waite, T.D. (2002). Removal of endocrine disrupters in advanced treatment. IWA World Water Congress, Melbourne. 7–12 April.

  • Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 12, 3245–3260.

    Article  Google Scholar 

  • Ternes, T. (2000). Pharmaceuticals and metabolites as contaminants of aquatic environment: An overview. Journal of the American Chemical Society, 219, 301–309.

    Google Scholar 

  • Ternes, T., Herrmann, N., Bonerz, M., Knacker, T., Siegrist, H., & Joss, A. (2004). A rapid method to measure the solid–water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water Research, 38, 4075–4084.

    Article  CAS  Google Scholar 

  • Treybal, E. R. (1981). Mass transfer operations (3rd ed.). Singapore: McGraw Hill.

    Google Scholar 

  • Wise, R. (2002). Antimicrobial resistance: Priorities for action. The Journal of Antimicrobial Chemotherapy, 49, 585–586. 10.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard J. M. Githinji.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Githinji, L.J.M., Musey, M.K. & Ankumah, R.O. Evaluation of the Fate of Ciprofloxacin and Amoxicillin in Domestic Wastewater. Water Air Soil Pollut 219, 191–201 (2011). https://doi.org/10.1007/s11270-010-0697-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0697-1

Keywords

  • Amoxicillin
  • Antibiotics
  • Ciprofloxacin
  • Distribution coefficient
  • Pharmaceuticals
  • Rhodococcus B30 strain
  • Sorption
  • Synthetic wastewater