Skip to main content
Log in

Mercury Extraction from Contaminated Soils by l-Cysteine: Species Dependency and Transformation Processes

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A new approach in soil remediation washing techniques is the use of l-cysteine based on the formation of organic complexes. In this study, the applicability of l-cysteine for the mobilisation of different mercury species from contaminated soils was evaluated. Soils were treated with l-cysteine solutions with S–Hg molar ratios of 1, 2, 10, 20, 100 and 200. In 24 h batch experiments, leachates with water could mobilise 1% of Hg. The addition of l-cysteine led to an increase of Hg mobilisation of 42% for soils with inorganically bound Hg. In column experiments, the maximum Hg removal rate was 75%. For soils with organically bound Hg or HgS, only 1–5% of Hg was mobilised. Thus, the extraction of Hg from soils with l-cysteine is highly dependent on the Hg-binding form. Hg speciation analyses of leachates indicate that Hg–l-cysteine complexes are labile complexes which can be easily transformed. Soil samples speciation analysis revealed that reduction to elemental mercury takes place at low S–Hg ratios (1 to 10), assumingly by microbial activity. At higher S–Hg ratios of 10 and 100, precipitation of stable Hg–S complexes could be observed. These species transformation processes are limitations for considering l-cysteine leaching as a remediation strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abumaizar, R. J., & Smith, E. H. (1999). Heavy metal contaminants removal by soil washing. Journal of Hazardous Materials, 70(1–2), 71–86.

    Article  CAS  Google Scholar 

  • Barkay, T., Turner, R., Saouter, E., & Horn, J. (1992). Mercury biotransformations and their potential for remediation of mercury contamination. Biodegradation, 3(2–3), 147–159.

    Article  CAS  Google Scholar 

  • Barkay, T., Miller, S. M., & Summers, A. O. (2003). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews, 27(2–3), 355–384.

    Article  CAS  Google Scholar 

  • Barnett, M. O., Turner, R. R., & Singer, P. C. (2001). Oxidative dissolution of metacinnabar (β-HgS) by dissolved oxygen. Applied Geochemistry, 16(13), 1499–1512.

    Article  CAS  Google Scholar 

  • Biester, H., & Scholz, C. (1997). Determination of mercury binding forms in contaminated soils: Mercury pyrolysis vs. sequential extraction. Environmental Science & Technology, 31(1), 2755–2762.

    Article  Google Scholar 

  • Biester, H., Müller, G., & Schöler, H. F. (2002). Estimating distribution and retention of mercury in three different soils contaminated by emissions from chlor-alkali plants: Part I. Science of the Total Environment, 284(1–3), 177–189.

    Article  CAS  Google Scholar 

  • Bollen, A., Wenke, A., & Biester, H. (2008). Mercury speciation analyses in HgCl2-contaminated soils and groundwater—implications for risk assessment and remediation strategies. Water Research, 42(1–2), 91–100.

    Article  CAS  Google Scholar 

  • Bramanti, E., D’Ulivo, A., Lampugnani, L., Raspi, G., & Zamboni, R. (1999). Cold vapour atomic fluorescence studies on the behaviour of mercury(II) and mercury(II)-thiol complexes. An alternative route for characterization of –SH binding groups. Journal of Analytical Atomic Spectrometry, 14, 179–185.

    Article  CAS  Google Scholar 

  • Brosset, C. (1987). The behaviour of mercury in the physical environment. Water, Air, & Soil Pollution, 34(2), 145–166.

    Article  CAS  Google Scholar 

  • Brown, N. L., Stoyanov, J. V., Kidd, S. P., & Hobman, J. L. (2003). The MerR family of transcriptional regulators. FEMS Microbiology Reviews, 27(2–3), 145–163.

    Article  CAS  Google Scholar 

  • Chang, T. C., & Yen, J. H. (2006). On-site mercury-contaminated soils remediation by using thermal desorption technology. Journal of Hazardous Materials, 128(1–3), 208–217.

    Article  CAS  Google Scholar 

  • Cheesman, B. V., Arnold, A. P., & Rabenstein, D. L. (1988). Nuclear magnetic resonance studies of the solution chemistry of metal complexes. 25. Hg(thiol)3 complexes and Hg(II)-thiol ligand exchange kinetics. Journal of the American Chemical Society, 110(19), 6359–6364.

    Article  CAS  Google Scholar 

  • Evangelou, M. W. H., Ebel, M., & Schaeffer, A. (2007). Chelate assisted phytoremediation of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. A review. Chemosphere, 68(6), 989–1003.

    Article  CAS  Google Scholar 

  • Fischer, K. (2002). Removal of heavy metals from soil components and soil by natural chelating agents, part I: Displacement from clay minerals and peat by L-cysteine and L-penicillamine. Water, Air, & Soil Pollution, 137(1–4), 267–286.

    Article  CAS  Google Scholar 

  • Frimmel, F. (1976). Remobilisierung von Quecksilber; Modellversuche und ihre praktische Bedeutung. Zeitschrift für Wasser- und Abwasser-Forschung, 6, 170–176.

    Google Scholar 

  • Gilmour, C. C., Henry, E. A., & Mitchell, R. (1992). Sulfate stimulation of mercury methylation in freshwater sediments. Environmental Science & Technology, 26(11), 2281–2287.

    Article  CAS  Google Scholar 

  • Gnamuš, A., Byrne, A. R., & Horvat, M. (2000). Mercury in the soil–plant–deer–predator food chain of a temperate forest in Slovenia. Environmental Science & Technology, 34(16), 3337–3345.

    Article  Google Scholar 

  • Haitzer, M., Aiken, G. R., & Ryan, J. N. (2003). Binding of mercury(II) to aquatic humic substances: Influence of pH and source of humic substances. Environmental Science & Technology, 37(11), 2436–2441.

    Article  CAS  Google Scholar 

  • Hauenstein, M. (2008). Hintergrundwerte der Böden für Rheinland-Pfalz. Resource document. Ministerium für Umwelt, Forsten und Verbraucherschutz Rheinland-Pfalz. http://www.mufv.rlp.de/fileadmin/mufv/img/inhalte/boden/Vorsorgender_Bodenschutz/Hintergrundwerte/Hintergrundwertebericht_RP_2008.pdf. Accessed 6 Oct 2010.

  • Higueras, P., Oyarzun, R., Lillo, J., Sánchez-Hernández, J. C., Molina, J. A., Esbrí, J. M., et al. (2006). The Almadén district (Spain): Anatomy of one of the world’s largest Hg-contaminated sites. Science of the Total Environment, 356(1–3), 112–124.

    Article  CAS  Google Scholar 

  • Holley, E. A., McQuillan, A. J., Craw, D., Kim, J. P., & Sander, S. G. (2007). Mercury mobilization by oxidative dissolution of cinnabar (α-HgS) and metacinnabar (β-HgS). Chemical Geology, 240(3–4), 313–325.

    Article  CAS  Google Scholar 

  • Ináncio, M. M., Pereira, V., & Pinto, M. S. (1998). Mercury contamination in sandy soils surrounding an industrial emission source (Estarreja, Portugal). Geoderma, 85(4), 325–339.

    Article  Google Scholar 

  • Khwaja, A. R., Bloom, P. R., & Brezonik, P. L. (2006). Binding constants of divalent mercury (Hg2+) in soil humic acids and soil organic matter. Environmental Science & Technology, 40(3), 844–849.

    Article  CAS  Google Scholar 

  • Kolthoff, I. M., & Barnum, C. (1940). The anodic reaction and waves of cysteine at the dropping mercury electrode and at the platinum micro wire electrode. Journal of the American Chemical Society, 62(11), 3061–3065.

    Article  CAS  Google Scholar 

  • Li, P., Feng, X. B., Qiu, G. L., Shang, L. H., & Li, Z. G. (2009). Mercury pollution in Asia: A review of the contaminated sites. Journal of Hazardous Materials, 168(2–3), 591–601.

    Article  CAS  Google Scholar 

  • Matlock, M. M., Howerton, B. S., & Atwood, D. A. (2003). Irreversible binding of mercury from contaminated soil. Advances in Environmental Research, 7(2), 347–352.

    Article  CAS  Google Scholar 

  • McColl, J. G., & Pohlmann, A. A. (1986). Soluble organic acids and their chelating influence on Al and other metal dissolution from forest soil. Water, Air, & Soil Pollution, 31(3–4), 921–927.

    Google Scholar 

  • Meili, M., Iverfeldet, Ǻ., & Hånkanson, L. (1991). Mercury in the surface water of Swedish forest lakes—concentrations, speciation and controlling factors. Water, Air, & Soil Pollution, 56(1), 439–453.

    Article  CAS  Google Scholar 

  • Mierle, G., & Ingram, R. (1991). The role of humic substances in the mobilization of mercury from watersheds. Water, Air, & Soil Pollution, 56(1), 349–357.

    Article  CAS  Google Scholar 

  • Mol, J. H., Ramlal, J. S., Lietar, C., & Verloo, M. (2001). Mercury contamination in freshwater, estuarine, and marine fishes in relation to small-scale gold mining in Suriname, South America. Environmental Research, 86(2), 183–197.

    Article  CAS  Google Scholar 

  • Müller, G., & Gastner, M. (1971). The Karbonat-Bombe, a simple device for the determination of the carbonate content in sediments, soils and other materials. Neues Jahrbuch für Mineralogie, 10, 466–469.

    Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering geology, 60(1–4), 193–207.

    Article  Google Scholar 

  • Neville, G. A., & Drakenberg, T. (1974). Mercury(II) complexation of cysteine, methyl cysteinate, and S-methylcysteine in acidic media. Canadian Journal of Chemistry, 52, 616–622.

    Article  CAS  Google Scholar 

  • Oviedo, C., & Rodríguez, R. (2003). EDTA: The chelating agent under environmental scrutiny. Quimíca Nova, 26(6), 901–905.

    Article  CAS  Google Scholar 

  • Paustenbach, D. J., Bruce, G. M., & Chrostowski, P. (2006). Current views on the oral bioavailability of inorganic mercury in soil: Implications for health risk assessments. Risk Analysis, 17(5), 533–544.

    Article  Google Scholar 

  • Peters, R. W. (1999). Chelating extraction of heavy metals from contaminated soils. Journal of Hazardous Materials, 66(1–2), 151–210.

    Article  CAS  Google Scholar 

  • Rabenstein, D. L., & Isab, A. A. (1982). A proton nuclear magnetic resonance study of the interaction of mercury with intact human erythrocytes. Biochimica et Biophysica Acta, 721(4), 374–384.

    Article  CAS  Google Scholar 

  • Reed, B. E., Carriere, P. C., & Moore, R. (1996). Flushing of a Pb(II) contaminated soil using HCl, EDTA and CaCl2. Journal of Environmental Engineering, 122(1), 48–50.

    Article  CAS  Google Scholar 

  • Schuster, E. (1991). The behaviour of mercury in the soil with special emphasis on complexation and adsorption processes—a review of the literature. Water, Air, & Soil Pollution, 56(1), 667–680.

    Article  CAS  Google Scholar 

  • Stary, J., & Kratzer, K. (1988). Radiometric determination of stability constants of mercury species complexes with L-cysteine. Journal of Radioanalytical and Nuclear Chemistry, 126(1), 69–75.

    Article  CAS  Google Scholar 

  • Stein, E. D., Cohen, Y., & Winer, A. M. (1996). Environmental distribution and transformation of mercury compounds. Critical Reviews in Environmental Science & Technology, 26(1), 1–43.

    Article  CAS  Google Scholar 

  • Stricks, W., & Kolthoff, I. M. (1953). Reactions between mercuric mercury and cysteine and glutathione. Apparent dissociation constants, heats, and entropies of formation of various forms of mercuric mercapto-cysteine and -glutathione. Journal of the American Chemical Society, 75(22), 5673–5681.

    Article  CAS  Google Scholar 

  • Taylor, N. J., & Carty, A. J. (1977). Nature of Hg2+–L-cysteine complexes implicated in mercury biochemistry. Journal of the American Chemical Society, 99(18), 6143–6145.

    Article  CAS  Google Scholar 

  • Turner, R. R., & Southworth, G. R. (1999). Mercury-contaminated industrial and mining sites in North America: An overview with selected case studies. In R. Ebinghaus (Ed.), Environmental science—mercury contaminated sites (pp. 89–112). Berlin: Springer.

    Google Scholar 

  • Wang, D. Y., Qing, C. L., & Guo, Y. J. (1997). Effects of humic acid on transport and transformation of mercury in soil–plant systems. Water, Air, & Soil Pollution, 95(1–4), 35–43.

    CAS  Google Scholar 

  • Wang, Q., Kim, D., Dionysiou, D. D., Sorial, G. A., & Timberlake, D. (2004). Sources and remediation for mercury contamination in aquatic systems—a literature review. Environmental pollution, 131(2), 323–336.

    Article  Google Scholar 

  • Wong, J. S. H., Hicks, R. E., & Probstein, R. F. (1997). EDTA-enhanced electroremediation of metal-contaminated soils. Journal of Hazardous Materials, 55(1–3), 61–79.

    Article  CAS  Google Scholar 

  • Yeung, A. T., Hsu, C., & Menon, R. M. (1996). EDTA-enhanced electrokinetic extraction of lead. Journal of Geotechnical Engineering, 122(8), 666–673.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Bollen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bollen, A., Biester, H. Mercury Extraction from Contaminated Soils by l-Cysteine: Species Dependency and Transformation Processes. Water Air Soil Pollut 219, 175–189 (2011). https://doi.org/10.1007/s11270-010-0696-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0696-2

Keywords

Navigation