Skip to main content
Log in

PO 3−4 Removal by and Permeability of Industrial Byproducts and Minerals: Granulated Blast Furnace Slag, Cement Kiln Dust, Coconut Shell Activated Carbon, Silica Sand, and Zeolite

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Excess PO 3−4 from agricultural subsurface drainage and runoff degrades the overall water quality of the receiving surface waters in a cumulatively damaging process known as eutrophication. In the past 25 years, PO 3−4 removal by industrial byproducts and minerals has received considerable attention because these materials are both abundant and inexpensive. In this study, the saturated falling-head hydraulic conductivity and phosphate removal capability of granulated blast furnace slag (GBFS), cement kiln dust (CKD), zeolite, silica sand, and coconut shell activated carbon (CS-AC) were assessed. GBFS, zeolite, silica sand, CS-AC, and 5:95% and 10:90% CKD/sand blends all exhibited hydraulic conductivities ≥0.001 cm/s. GBFS and the CKD/sand blends exhibited >98% PO 3−4 removal while CS-AC removed 70–79% of initial PO 3−4 concentrations. In contrast, silica sand and zeolite removed 21–58% of PO 3−4 . The phosphate removal data for each material was modeled against the Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Frumkin sorption isotherms to yield insight into possible removal mechanisms. Overall, GBFS, CKD, zeolite, silica sand, and CS-AC were sufficiently permeable and removed significant amounts of PO 3−4 and should be considered for use in treatment of agricultural effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abu-Zreig, M., Rudra, R. P., Whiteley, H. R., Lalonde, M. N., & Kaushik, K. N. (2003). Phosphorus removal in vegetated filter strips. Journal of Environmental Quality, 32(2), 613–619.

    Article  CAS  Google Scholar 

  • Agyei, N. M., Strydom, C. A., & Potgieter, J. H. (2002). The removal of phosphate ions from aqueous solution by fly ash, slag, ordinary Portland cement and related blends. Cement and Concrete Research, 32(12), 1889–1897.

    Article  CAS  Google Scholar 

  • Algoazany, A. S., Kalita, P. K., Czapar, G. F., & Mitchell, J. K. (2007). Phosphorus transport through subsurface drainage and surface runoff from a flat watershed in East Central Illinois, USA. Journal of Environmental Quality, 36(3), 681–693.

    Article  CAS  Google Scholar 

  • de-Bashan, L. E., & Bashan, Y. (2007). Fertilizer potential of phosphorus recovered from wastewater treatments. In E. Velazquez-Perez & C. Rodriguez-Barrueco (Eds.), First international meeting on microbial phosphate solubilization. series: developments in plant and soil sciences (102, pp. 179–184). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Başar, C. A. (2006). Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. Journal of Hazardous Materials, 135(1–3), 232–241.

    Google Scholar 

  • Bhargava, D. S., & Sheldarkar, S. B. (1993). Use of TNSAC in phosphate adsorption studies and relationships. Water Research, 27(2), 303–312.

    Article  CAS  Google Scholar 

  • Blick, S.A., Kelly, F. & Skupien, J.J. 2004. New Jersey Stormwater Best Management Practices Manual. New Jersey Department of Environmental Protection, Division of Watershed Management. Available at: http://www.state.nj.us/dep/stormwater/bmp_manual2.htm. Accessed 03 March 2010.

  • Bolster, C. H. (2008). Revisiting a statistical shortcoming when fitting the Langmuir model to sorption data. Journal of Environmental Quality, 37(5), 1986–1992.

    Article  CAS  Google Scholar 

  • Bolster, C. H., & Hornberger, G. M. (2007). On the use of linearized Langmuir equations. Soil Science Society of America Journal, 71(6), 1796–1806.

    Article  CAS  Google Scholar 

  • Brady, N. C., & Weil, R. R. (2002). The nature and property of soils (13th ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Brown, A.M. (2001). A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet. Computer Methods and Programs in Biomedicine, 65(3), 191–200.

  • Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: a practical information-theoretic approach (2nd ed.). New York: Springer.

    Google Scholar 

  • Daniel, T. C., Sharpley, A. N., & Lemunyon, J. L. (1998). Agricultural phosphorus and eutrophication: a symposium overview. Journal of Environmental Quality, 27(2), 251–257.

    Article  CAS  Google Scholar 

  • Emery, J. 1984. Steel slag utilization in asphalt mixes. National Slag Association, publication MF 186-1. Available at: http://www.nationalslag.org/archive/legacy/nsa_186-1_steel_slag_utilization_in_asphalt_mixes.pdf.

  • EPA. (2008). Fate, transport, and transformation test guidelines. Adsorption/desorption (Batch equilibrium). OPPTS 835.1230. Available at: www.epa.gov. Accessed 28 February 2010.

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Gale, P. M., Reddy, K. R., & Graetz, D. A. (1994). Phosphorus retention by wetland soils used for treated wastewater disposal. Journal of Environmental Quality, 23(2), 370–377.

    Article  CAS  Google Scholar 

  • Hawley, N., Johengen, T. H., Rao, Y. R., Ruberg, S. A., Beletsky, D., Ludsin, S. A., et al. (2006). Lake Erie hypoxia prompts Canada-U.S. study. EOS, Transactions, American Geophysical Union, 87(32), 313–319.

    Article  Google Scholar 

  • Helfferich, F. (1962). Ion exchange. New York, NY: McGraw-Hill.

    Google Scholar 

  • Johansson, L., & Gustafsson, J. P. (2000). Phosphate removal from wastewaters using blast furnace slags and opoka—mechanisms. Water Research, 34(1), 259–265.

    Article  CAS  Google Scholar 

  • Kinley, R. D., Gordon, R. J., Stratton, G. W., Patterson, G. T., & Hoyle, J. (2007). Phosphorus losses through agricultural tile drainage in Nova Scotia, Canada. Journal of Environmental Quality, 36(2), 469–477.

    Article  CAS  Google Scholar 

  • Kumar, K. V., & Sivanesan, S. (2005). Comparison of linear and non-linear method in estimating the sorption isotherm parameters for safranin onto activated carbon. Journal of Hazardous Materials, 123(1–3), 288–292.

    Article  CAS  Google Scholar 

  • Kumar, M., Badruzzaman, M., Adham, S. &. Oppenheimer, J. (2006). Beneficial phosphate recovery from reverse osmosis (RO) concentrate of an integrated membrane system using polymeric ligand exchanger (PLE). Water Research, 41(10), 2211–2219.

  • Meals, D. W. (1993). Assessing nonpoint phosphorus control in the LaPlatte River watershed. Lake and Reservoir Management, 7(2), 197–207.

    Article  Google Scholar 

  • Limousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthès, V. & Krimissa, M. (2007). Sorption isotherms: a review on physical bases, modeling and measurement. Applied Geochemistry 22(2), 249–275.

    Google Scholar 

  • Motulsky, H. (1996). The GraphPad guide to nonlinear regression. GraphPad Prism Software User Manual. San Diego, CA: GraphPad Software Inc. Available at: http://www.graphpad.com/www/nonling1.htm. Accessed 01 March 2010.

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Sangeetha, D. (2004). Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl2 activated coir pith. Journal of Colloid and Interface Science, 280(2), 359–365.

    Article  CAS  Google Scholar 

  • Novak, J. M., Stone, K. C., Watts, D. W., & Johnson, M. H. (2003). Dissolved phosphorus transported during storm and base flow conditions from an agriculturally intensive southeastern Coastal Plain watershed. Transactions of the ASAE, 46(5), 1355–1363.

    CAS  Google Scholar 

  • Oguz, E. (2004). Removal of phosphate from aqueous solution with blast furnace slag. Journal of Hazardous Materials, 114(1–3), 131–137.

    Article  CAS  Google Scholar 

  • Oguz, E. (2005). Thermodynamic and kinetic investigations of PO 3−4 adsorption on blast furnace slag. Journal of Colloid and Interface Science, 281(1), 62–67.

    Article  CAS  Google Scholar 

  • Ohio EPA. (2010) Ohio Lake Erie Phosphorus Task Force Final Report. Available at: www.epa.ohio.gov/dsw/lakeerie/ptaskforce/index.aspx

  • Özacar, M. (2003). Equilibrium and kinetic modeling of adsorption of phosphorus on calcined alunite. Adsorption, 9(2), 125–132.

    Article  Google Scholar 

  • Özcan, A., Özcan, A. S., Tunali, S., Akar, T., & Kiran, I. (2005). Determination of the equilibrium, kinetic, and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicun annuum. Journal of Hazardous Materials, 124(1–3), 200–208.

    Article  Google Scholar 

  • Schilling, K. E., & Helmers, M. (2008). Effects of subsurface drainage tiles on streamflow in Iowa agricultural watersheds: exploratory hydrograph analysis. Hydrological Processes, 22(23), 4497–4506.

    Article  Google Scholar 

  • Sharpley, A. N., Chapra, S. C., Wedepohl, R., Sims, J. T., Daniels, T. C., & Reddy, K. R. (1994). Managing agricultural phosphorus for the protection of surface waters: issues and options. Journal of Environmental Quality, 23(3), 437–451.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (2003). Environmental soil chemistry (2nd ed.). Amsterdam, The Netherlands: Academic.

    Google Scholar 

  • Tunesi, S., Poggi, V. & Gessa, C. (1999). Phosphate adsorption and precipitation in calcareous soils: the role of calcium ions in solution and carbonate minerals. Nutrient Cycling in Agroecosystems, 53(3), 219–227.

    Google Scholar 

  • Ulen, B. (1995). Episodic precipitation and discharge events and their influence on losses of phosphorus and nitrogen from tile drained arable fields. Swed J Agric Res, 25(1), 25–31.

    Google Scholar 

  • Villapando, R. R., & Graetz, D. A. (2001). Phosphorus sorption and desorption properties of the spodic horizon from selected Florida spodosols. Soil Science Society of America Journal, 65(2), 331–339.

    Article  CAS  Google Scholar 

  • Williams, S. (1999). Struvite precipitation in the sludge stream at slough wastewater treatment plant and opportunities for phosphorus recovery. Environmental Technology, 20(7), 743–747.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Paul Ruehl of LaFarge North America, and Joe McEnaney of St. Cloud Mining (New Mexico) for providing the materials tested, the USGA for funding support, Carl Bolster (USDA-ARS) for statistical expertise, Barry Allred (USDA-ARS) for technical assistance, and both Sarah Hess (USDA-ARS) and Jeff Risley (USDA-ARS) for experimental assistance and sample processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheela G. Agrawal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, S.G., King, K.W., Fischer, E.N. et al. PO 3−4 Removal by and Permeability of Industrial Byproducts and Minerals: Granulated Blast Furnace Slag, Cement Kiln Dust, Coconut Shell Activated Carbon, Silica Sand, and Zeolite. Water Air Soil Pollut 219, 91–101 (2011). https://doi.org/10.1007/s11270-010-0686-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0686-4

Keywords

Navigation