Advertisement

Water, Air, & Soil Pollution

, Volume 218, Issue 1–4, pp 681–691 | Cite as

Copper Uptake, Physiology and Cytogenetic Characteristics in Three Matricaria chamomilla Cultivars

  • Jozef Kováčik
  • Bořivoj Klejdus
  • Josef Hedbavny
  • Pavol Mártonfi
  • František Štork
  • Lenka Mártonfiová
Article

Abstract

Selected physiological parameters and copper uptake by three chamomile (Matricaria chamomilla) cultivars (two tetraploid—‘Lutea’ and ‘Unknown’ and one diploid—‘Novbona’) exposed to 60 μM Cu over 7 days were studied. Genome size was 10.6 and 5.5 pg DNA/2C and chromosome number 2n = 36 and 2n = 18 in tetraploids and diploid, respectively. Root tissue water content and dry biomass were more reduced in diploid cultivar. Soluble proteins were depressed by Cu excess in all cultivars without respect to ploidy. Lignin accumulation and cinnamylalcohol dehydrogenase activity was the highest in Novbona. Phenylalanine ammonia-lyase activity was stimulated in tetraploid but reduced in diploid roots. Diploid contained higher amount of Cu and soluble phenols in both shoots and roots. Sulphur-containing amino acids were stimulated in Cu-exposed shoots independently on ploidy level. Potassium content was more reduced in the diploid cultivar. Our data indicate that induction of phenolic metabolism is faster in diploid cultivar which also contained higher amount of Cu. In this view, polyploidisation is a good tool for the reduction of shoot metal accumulation and growth tolerance to Cu excess. Identity of Czech tetraploid cultivar ‘Unknown’ is also discussed.

Keywords

Amino acids Chamomile ‘Bohemia’ Genome Heavy metals Phenols 

Notes

Acknowledgments

This work was supported by the Grant Agency of the Czech Republic (GA CR 525/07/0338) and partially by the grant of P. J. Šafárik University rector for young scientists (to JK, no. VVGS 1/09-10). We thank BSc. Silvia Malčovská for Fig. 1 editing.

References

  1. Ali, N. A., Bernal, M. P., & Ater, M. (2002). Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant and Soil, 239, 103–111.CrossRefGoogle Scholar
  2. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  3. Doležel, J., & Göhde, W. (1995). Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry, 19, 103–106.CrossRefGoogle Scholar
  4. Doležel, J., Greilhuber, J., & Suda, J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols, 2, 2233–2244.CrossRefGoogle Scholar
  5. dos Santos, W. D., Ferrarese, M. L. L., & Ferrarese-Filho, O. (2006). High performance liquid chromatography method for the determination of cinnamyl alcohol dehydrogenase activity in soybean roots. Plant Physiology and Biochemistry, 44, 511–515.CrossRefGoogle Scholar
  6. Glücknerová, E., Blažek, Z., & Starý, F. (1965). Characterization of the Czechoslovak approved varieties of camomile (Matricaria chamomilla L.). Československá Farmacie (in Czech), 14, 105–112.Google Scholar
  7. Greilhuber, J., Temsch, E. M., & Loureiro, J. C. M. (2007). Nuclear DNA content measurement. In J. Doležel, J. Greilhuber, & J. Suda (Eds.), Flow cytometry with plant cells (pp. 67–101). Weinheim: Wiley.CrossRefGoogle Scholar
  8. Grejtovský, A., & Pirč, R. (2000). Effect of high cadmium concentrations in soil on growth, uptake of nutrients and some heavy metals of Chamomilla recutita (L.) Rauschert. Journal of Applied Botany, 74, 169–174.Google Scholar
  9. Guo, W. J., Meetam, M., & Goldsbrough, P. B. (2008). Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiology, 146, 1697–1706.CrossRefGoogle Scholar
  10. Huang, Y. Z., Hu, Y., & Liu, Y. X. (2009). Combined toxicity of copper and cadmium to six rice genotypes (Oryza sativa L.). Journal of Environmental Sciences-China, 21, 647–653.CrossRefGoogle Scholar
  11. Janas, K. M., Amarowicz, R., Zielińska-Tomaszewska, J., Kosińska, A., & Posmyk, M. M. (2009). Induction of phenolic compounds in two dark-grown lentil cultivars with different tolerance to copper ions. Acta Physiologiae Plantarum, 31, 587–595.CrossRefGoogle Scholar
  12. Janas, K. M., Zielińska-Tomaszewska, J., Rybaczek, D., Maszewski, J., Posmyk, M. M., Aramowicz, R., et al. (2010). The impact of copper ions on growth, lipid peroxidation and phenolic compound accumulation and localization in lentil (Lens culinaris Medic.) seedlings. Journal of Plant Physiology, 167, 270–276.CrossRefGoogle Scholar
  13. Jung, C., Maeder, V., Funk, F., Frey, B., Sticher, H., & Frossard, E. (2003). Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification. Plant and Soil, 252, 301–312.CrossRefGoogle Scholar
  14. Kováčik, J., & Bačkor, M. (2007). Phenylalanine ammonia-lyase and phenolic compounds in chamomile tolerance to cadmium and copper excess. Water, Air, and Soil Pollution, 185, 185–193.CrossRefGoogle Scholar
  15. Kováčik, J., & Klejdus, B. (2008). Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Reports, 27, 605–615.CrossRefGoogle Scholar
  16. Kováčik, J., Grúz, J., Bačkor, M., Tomko, J., Strnad, M., & Repčák, M. (2008). Phenolic compounds composition and physiological attributes of Matricaria chamomilla grown in copper excess. Environmental and Experimental Botany, 62, 145–152.CrossRefGoogle Scholar
  17. Kováčik, J., Grúz, J., Hedbavny, J., Klejdus, B., & Strnad, M. (2009a). Cadmium and nickel uptake are differentially modulated by salicylic acid in Matricaria chamomilla plants. Journal of Agricultural and Food Chemistry, 57, 9848–9855.CrossRefGoogle Scholar
  18. Kováčik, J., Klejdus, B., & Bačkor, M. (2009b). Nitric oxide signals ROS scavenger-mediated enhancement of PAL activity in nitrogen-deficient Matricaria chamomilla roots: side effects of scavengers. Free Radical Biology & Medicine, 46, 1686–1693.CrossRefGoogle Scholar
  19. Kováčik, J., Klejdus, B., Hedbavný, J., & Bačkor, M. (2009c). Tolerance of Silene vulgaris to copper: population-related comparison of selected physiological parameters. Environmental Toxicology, (in press, doi: 10.1002/tox.20519).
  20. Kováčik, J., Klejdus, B., Hedbavny, J., Štork, F., & Bačkor, M. (2009d). Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants. Plant and Soil, 320, 231–242.CrossRefGoogle Scholar
  21. Kraljevic-Balalic, M., Mladenov, N., Balalic, I., & Zoric, M. (2009). Variability of leaf cadmium content in tetraploid and hexaploid wheat. Genetika-Belgrade, 41, 1–10.Google Scholar
  22. Kumar, P., Tewari, R. K., & Sharma, P. N. (2008). Modulation of copper toxicity-induced oxidative damage by excess of iron supply in maize plants. Plant Cell Reports, 27, 399–409.CrossRefGoogle Scholar
  23. Küpper, H., Mijovilovich, A., Meyer-Klaucke, W., & Kroneck, P. M. H. (2004). Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) revealed by X-ray absorption spectroscopy. Plant Physiology, 134, 748–757.CrossRefGoogle Scholar
  24. Madejon, P., Ramirez-Benitez, J. E., Corrales, I., Barceló, J., & Poschenrieder, C. (2009). Copper-induced oxidative damage and enhanced antioxidant defences in the root apex of maize cultivars differing in Cu tolerance. Environmental and Experimental Botany, 67, 415–420.CrossRefGoogle Scholar
  25. Murín, A. (1960). Substitution of cellophane for glass covers to facilitate preparation of permanent squashes and smears. Stain Technology, 35, 351–353.Google Scholar
  26. Nieminen, T. N., Ukonmaanaho, L., Rausch, N., & Shotyk, W. (2007). Biogeochemistry of nickel and its release into the environment. In: Sigel, A., Sigel, H., & Sigel, R. K. O. (Eds.), Metal ions in life sciences. vol. 2. John Wiley & Sons Ltd, pp 1−30.Google Scholar
  27. Oravec, V., Oravec, V., Jr., Repčák, M., Šebo, Ľ., Jedinák, D., & Varga, I. (2005). Cultivation experiences in Slovakia. In R. Franke & H. Schilcher (Eds.), Chamomile industrial profiles (pp. 121–139). Boca Raton: Taylor & Francis.Google Scholar
  28. Ordoñez, A. A. L., Gomez, J. D., Vattuone, M. A., & Isla, M. I. (2006). Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chemistry, 97, 452–458.CrossRefGoogle Scholar
  29. Otto, F. J. (1990). DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In Z. Darzynkiewicz & H. A. Crissman (Eds.), Methods in cell biology (pp. 105–110). San Diego: Academic.Google Scholar
  30. Repčák, M., & Krausová, T. (2009). Phenolic glucosides in the course of ligulate flower development in diploid and tetraploid Matricaria chamomilla. Food Chemistry, 116, 19–22.CrossRefGoogle Scholar
  31. Sakihama, Y., Cohen, M. F., Grace, S. C., & Yamasaki, H. (2002). Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants. Toxicology, 177, 67–80.CrossRefGoogle Scholar
  32. Shi, J. Y., Wu, B., Yuan, X. F., Cao, Y. Y., Chen, X. C., Chen, Y. X., et al. (2008). An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant and Soil, 302, 163–174.CrossRefGoogle Scholar
  33. Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology & Medicine, 18, 321–336.CrossRefGoogle Scholar
  34. Tolrà, R. P., Poschenrieder, C., Luppi, B., & Barceló, J. (2005). Aluminium-induced changes in the profiles of both organic acids and phenolic substances underlie Al tolerance in Rumex acetosela L. Environmental and Experimental Botany, 54, 231–238.CrossRefGoogle Scholar
  35. Vasconcelos, M. T., Azenha, M., & de Freitas, V. (1999). Role of polyphenols in copper complexation in red wines. Journal of Agricultural and Food Chemistry, 47, 2791–2796.CrossRefGoogle Scholar
  36. Wang, X., Shi, G. X., Xu, Q. S., & Hu, J. Z. (2007). Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. Journal of Plant Physiology, 164, 1062–1070.CrossRefGoogle Scholar
  37. Weber, M. B., Schat, H., & Der Maarel, T. B. V. (1991). The effect of copper toxicity on the contents of nitrogen compounds in Silene vulgaris (Moench) Garcke. Plant and Soil, 133, 101–109.CrossRefGoogle Scholar
  38. Wu, Z. X., Fernandez-Lima, F. A., & Russell, D. H. (2010). Amino acid influence on copper binding to peptides: Cysteine versus arginine. Journal of the American Society for Mass Spectrometry, 21, 522–533.CrossRefGoogle Scholar
  39. Xiong, Z. T., Liu, C., & Geng, B. (2006). Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr. Ecotoxicology and Environmental Safety, 64, 273–280.CrossRefGoogle Scholar
  40. Zhou, Z. G., Zhou, J. M., Li, R. Y., Wang, H. Y., & Wang, J. F. (2007). Effect of exogenous amino acids on Cu uptake and translocation in maize seedlings. Plant and Soil, 292, 105–117.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jozef Kováčik
    • 1
  • Bořivoj Klejdus
    • 2
  • Josef Hedbavny
    • 2
  • Pavol Mártonfi
    • 1
  • František Štork
    • 1
  • Lenka Mártonfiová
    • 3
  1. 1.Department of Botany, Institute of Biology and Ecology, Faculty of ScienceP. J. Šafárik UniversityKošiceSlovak Republic
  2. 2.Department of Chemistry and BiochemistryMendel University of Agriculture and Forestry BrnoBrnoCzech Republic
  3. 3.Botanical Garden of P. J. Šafárik UniversityKošiceSlovak Republic

Personalised recommendations