Water, Air, & Soil Pollution

, Volume 218, Issue 1–4, pp 517–528 | Cite as

Groundwater Pollution in a Karstic Region (NE Yucatan): Baseline Nutrient Content and Flux to Coastal Ecosystems

  • Laura Hernández-Terrones
  • Mario Rebolledo-Vieyra
  • Martin Merino-IbarraEmail author
  • Melina Soto
  • Adrien Le-Cossec
  • Emiliano Monroy-Ríos


The quality of groundwater is threatened in karstic regions with very high population growth, such as the eastern coast of Yucatan. As polluted groundwater flows towards the ocean, coastal ecosystems and coral reefs may also be affected. Pollution and the interaction between the coastal aquifer and the reef lagoon were assessed at a developing area (Puerto Morelos, NE Yucatan Peninsula) within the Mesoamerican Coral Reef System. Coastal environments along the land–sea gradient (wells, mangroves, beaches, submarine springs, the reef lagoon, and the open sea) were sampled. Silicate and salinity were used as tracers of groundwater and seawater, respectively. Their patterns evidence water flow and mixing among these coastal environments. High nitrate concentrations (268.6 μM) and coliform bacteria densities indicate groundwater pollution in most of the wells sampled and also in mangroves, beaches, and submarine springs. Phosphorous content peaks (14.2 μM) in mangroves, where it is likely released due to reducing conditions in the sediments. Nitrogen flux toward the lagoon reef through groundwater discharge is estimated at 2.4 ton N km−1 year−1 and phosphorous at 75 to 217 kg P km−1 year−1. These results provide evidence of the need for more detailed groundwater studies and for the integrated management of aquifers and coastal ecosystems in karstic regions.


Springs Submarine groundwater discharge Water quality Coral reef Connectivity 



We thank the authorities of the Comisión Nacional de Áreas Naturales Protegidas, particularly Daniela Guevara, director of Parque Nacional Arrecifes de Puerto Morelos, for their support. The authors are grateful to Sergio F. Castillo Sandoval for nutrient analyses, to Patricia M. Valdespino for the art work, and to Marcos Merino for its thorough revision of the English. The authors acknowledge the collaboration of Vincent Jean-Baptiste and Juliette Lementais (INAPG, France). This work was partially funded by the Coral Reef Targeted Research and Capacity Building for Management program of the Global Environmental Fund, of which this paper is a contribution. We are also grateful to the editor and reviewers, who helped improve significantly this paper through their sound revision of the manuscript submitted.


  1. American Public Health Association (APHA). (1998). Standard Methods for the Examination of Water and Wastewater. Washington, DC: American Public Health Association.Google Scholar
  2. Andréfouët, S., Mumby, P. J., McField, M., Hu, C., & Muller-Karger, F. E. (2002). Revisiting coral reef connectivity. Coral Reefs, 21, 43–48.Google Scholar
  3. Asano, Y., Uchida, T., & Ohte, N. (2003). Hydrologic and geochemical influences on the dissolved silica concentration in natural water in a steep headwater catchment. Geochimica et Cosmochimica Acta, 67, 1973–1989. doi: 10.1016/S0016-7037(02)01342-X.CrossRefGoogle Scholar
  4. Back, W., & Hanshaw, B. (1970). Comparison of chemical hydrogeology of the carbonate Peninsulas of Florida and Yucatan. Journal of Hydrology, 10, 330–368.CrossRefGoogle Scholar
  5. Beddows, P. A., Smart, P. L., Whitaker, F. F., & Smith, S. L. (2002). Density stratified groundwater circulation on the Caribbean Coast of the Yucatan Peninsula, Mexico. Karst Frontiers. Karst Waters Institute Special Publication, 7, 129–134.Google Scholar
  6. Beddows, P. A., Smart, P. L., Whitaker, F. F., & Smith, S. L. (2007). Decoupled fresh-saline groundwater circulation of a coastal carbonate aquifer: Spatial patterns of temperature and specific electrical conductivity. Journal of Hydrology, 346, 18–32.CrossRefGoogle Scholar
  7. Bruno, J. F., Selig, E. R., Casey, K. S., Page, C. A., Willis, B. L., et al. (2007). Thermal stress and coral cover as drivers of coral disease outbreaks. Public Library of Science Biology, 5(6), 1220–1227. doi: 10.1371/journal.pbio.0050124.Google Scholar
  8. Chérubin, L. M., Kuchinke, C. P., & Paris, C. B. (2008). Ocean circulation and terrestrial runoff dynamics in the Mesoamerican region from spectral optimization of SeaWiFS data and a high resolution simulation. Coral Reefs, 27, 503–519. doi: 10.1007/s00338-007-0348-1.CrossRefGoogle Scholar
  9. Corbett, D. R., Chanton, J., Burnett, W., Dillon, K., Rutkowski, C., et al. (1999). Patterns of groundwater discharge into Florida Bay. Limnology and Oceanography, 44(4), 1045–1055.CrossRefGoogle Scholar
  10. Coronado, C., Candela, J., Iglesias-Prieto, R., Sheinbaum, J., López, M., et al. (2007). On the circulation in the Puerto Morelos fringing reef lagoon. Coral Reefs, 26, 149–163.CrossRefGoogle Scholar
  11. Corredor, J. E., Howarth, R. W., Twilley, R. R., & Morell, J. M. (1999). Nitrogen cycling and anthropogenic impact in the tropical interamerican seas. Biogeochemistry, 46, 163–178.Google Scholar
  12. Escolero, O. A., Marin, L. E., Steinich, B., Pacheco, A. J., Cabrera, S. A., et al. (2002). Development of a protection strategy of Karst limestone aquifers: The Merida Yucatan, Mexico case study. Water Resources Management, 16, 351–367.CrossRefGoogle Scholar
  13. González-Herrera, R., Sánchez-y-Pinto, I., & Gamboa-Vargas, J. (2002). Groundwater-flow modeling in the Yucatán karstic aquifer, Mexico. Hydrogeology Journal, 10, 539–552.CrossRefGoogle Scholar
  14. Grasshoff, K., Kremling, K., & Ehrhardt, M. (1983). Methods of Seawater Analysis. Weinheim: Verlag Chemie.Google Scholar
  15. Hanshaw, B. B., & Back, W. (1980). Chemical mass-wasting of the northern Yucatan Peninsula by groundwater dissolution. Geology, 8, 222–224.CrossRefGoogle Scholar
  16. Haynes, D., Brodie, J., Waterhouse, J., Bainbridge, Z., Bass, D., et al. (2007). Assessment of the water quality and ecosystem health of the great barrier reef (Australia): Conceptual models. Environmental Management, 40, 993–1003.CrossRefGoogle Scholar
  17. Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., et al. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737–1742.CrossRefGoogle Scholar
  18. Kirkwood, D. S. (1994). Sanplus segmented flow analyzer and its applications. Seawater analysis. Amsterdam: Skalar.Google Scholar
  19. Lapointe, B. E., O’Connell, J. D., & Garrett, G. S. (1990). Nutrient coupling between on-site sewage disposal systems, groundwaters, and nearshore surface waters of the Florida keys. Biogeochemistry, 10(3), 289–307.CrossRefGoogle Scholar
  20. Marin, L. E., & Perry, E. C. (1994). The hydrology and contamination potential of northwestern Yucatan, Mexico. Geofisica internacional, 33, 619–623.Google Scholar
  21. Matson, E. A. (1983). Nutrient flux through soils and aquifers to the coastal zone of Guam (Mariana Islands). Limnology and Oceanography, 38(2), 361–371.CrossRefGoogle Scholar
  22. Merino, M. (1997). Upwelling on the Yucatan Shelf: Hydrographic evidence. Journal of Marine Systems, 13, 101–121.CrossRefGoogle Scholar
  23. Merino, M. & Otero L. (1991). Atlas Ambiental Costero, Puerto Morelos—Quintana Roo. Chetumal, México: Centro de Investigaciones de Quintana Roo (CIQRO).Google Scholar
  24. Mutchler, T., Dunton, K. H., Townsend-Small, A., Fredriksen, S., & Rasser, M. K. (2007). Isotopic and elemental indicators of nutrient sources and status of coastal habitats in the Caribbean Sea, Yucatan Peninsula, Mexico. Estuarine, Coastal and Shelf Science, 74(3), 449–457.CrossRefGoogle Scholar
  25. Nürnberg, G. K. (1984). The prediction of internal phosphorus load in lakes with anoxic hypolimnia. Limnology and Oceanography, 29, 111–124.CrossRefGoogle Scholar
  26. Pacheco, J., & Cabrera, A. (1997). Groundwater contamination by nitrates in the Yucatan Peninsula, Mexico. Hydrogeology Journal, 5, 47–53.CrossRefGoogle Scholar
  27. Pacheco, A., Cabrera, J. A., & Marin, L. E. (2000). Bacteriological contamination assessment in the karstic aquifer of Yucatan, Mexico. Geofisica Internacional, 39, 285–291.Google Scholar
  28. Pacheco, A., Cabrera, J. A., & Marin, L. E. (2001). Nitrate temporal and spatial patterns in twelve water supply wells, Yucatan, Mexico. Environmental Geology, 40, 708–715.CrossRefGoogle Scholar
  29. Paytan, A., Shellenbarger, G., Street, J., Gonneea, M., Davis, K., et al. (2006). Submarine groundwater discharge, an important source of new inorganic nitrogen to coral reef ecosystems. Limnology and Oceanography, 51, 343–348.CrossRefGoogle Scholar
  30. Perry, E. C., Swift, J., Gamboa, J., Reeve, A., Sanborn, et al. (1989). Geologic and environmental aspects of surface cementation, north coast, Yucatan, Mexico. Geology, 17, 17–20.CrossRefGoogle Scholar
  31. Personné, J. C., Poty, F., Vaute, L., & Drogue, C. (1998). Survival, transport and dissemination of Escherichia coli and enterococci in a fissured environment. Study of a flood in a karstic aquifer. Journal of Applied Microbiology, 81, 431–438.CrossRefGoogle Scholar
  32. Ruiz-Rentería, F., Van Tussenbroek, B. I., & Jordan-Dahlgren, E. (1998). Puerto Morelos, Quintana Roo, México. In B. Kjerfve (Ed.), Caribbean coastal marine productivity (Caricomp): Coral reef, seagrass and mangrove site characteristics. Paris: UNESCO.Google Scholar
  33. Smith, S.V., Camacho Ibar, V., Herrera Silveira, J., Valdés, D., David, L., et al. (1999). Estimating groundwater flow using multiple conservative tracers. In: S. V. Smith, S. Ibarra-Obando, V.F. Camacho-Ibar (Eds.), Comparison of Carbon, Nitrogen and Phosphorous Fluxes in Coastal Lagoons of Central America, LOICZ Reports & Studies No. 15,. Texel, The Netherlands: LOICZ.Google Scholar
  34. Valderrama, J. C. (1981). The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry, 10, 109–122.CrossRefGoogle Scholar
  35. White, A. F., & Blum, A. E. (1995). Effects of climate on chemical weathering in watersheds. Geochimica et Cosmochimica Acta, 59, 1729–1747.CrossRefGoogle Scholar
  36. World Health Organization. (1984). Guidelines for drinking water quality. In Health criteria and other supporting information. Geneva: WHO.Google Scholar
  37. Young, M. B., Gonneea, M. E., Fong, D. A., Moore, W. S., Herrera-Silveira, J., & Paytan, A. (2008). Characterizing sources of groundwater to a tropical coastal lagoon in a karstic area using radium isotopes and water chemistry. Marine Chemistry, 109, 377–394.CrossRefGoogle Scholar
  38. Zimmerman, C. F., Montgomery, J. R., & Carlson, P. R. (1985). Variability of dissolved reactive phosphate flux rates in nearshore estuarine sediments: Effects of groundwater flow. Estuaries, 8, 228–236.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Laura Hernández-Terrones
    • 1
  • Mario Rebolledo-Vieyra
    • 1
  • Martin Merino-Ibarra
    • 2
    Email author
  • Melina Soto
    • 1
  • Adrien Le-Cossec
    • 1
  • Emiliano Monroy-Ríos
    • 3
  1. 1.Centro de Investigación Científica de YucatánUnidad Quintana Roo/Unidad de Ciencias del AguaCancúnMexico
  2. 2.Unidad Académica de Ecología Marina, Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoCoyoacánMexico
  3. 3.Posgrado de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoCoyoacánMexico

Personalised recommendations