Abstract
The kinetics and mechanism of methylene blue adsorption onto raw pine cone biomass (Pinus radiata) was investigated under various physicochemical parameters. The extent of the methylene blue dye adsorption increased with increases in initial dye concentration, contact time and solution pH but decreases with the amount of adsorbent, salt concentration and temperature of the system. Overall the kinetic studies showed that the methylene blue adsorption process followed pseudo-second-order kinetics among various kinetic models tested. The different kinetic parameters including rate constant, half-adsorption time and diffusion coefficient are determined at different physicochemical conditions. Equilibrium data were best represented by Langmuir isotherm among Langmuir and Freundlich adsorption isotherm. The maximum monolayer adsorption capacity of pine cone biomass was 109.89 mg/g at 30°C. The value of separation factor, R L, from Langmuir equation and Freundlich constant, n, both give an indication of favourable adsorption. Thermodynamic parameters such as standard Gibbs free energy (∆G 0), standard enthalpy (∆H 0), standard entropy (∆S 0) and the activation energy (A) were calculated. A single-stage batch absorber design for the methylene blue adsorption onto pine cone biomass has been presented based on the Langmuir isotherm model equation.
This is a preview of subscription content, access via your institution.













Abbreviations
- A :
-
Activation energy of adsorption (kJ/mol)
- C f :
-
Final metal ion concentration, ppm (mg/l)
- C 0 :
-
Initial metal ion concentration, ppm (mg/l)
- C t :
-
Metal ion concentration at time t, ppm (mg/l)
- D:
-
Diffusion coefficient (cm2/s)
- ∆G 0 :
-
Gibbs free energy change (kJ/mole)
- ∆H 0 :
-
Enthalpy change (kJ/mole)
- ∆S 0 :
-
Entropy change (J/k mole)
- k 1 :
-
Pseudo-first-order rate constant (min−1)
- k 2 :
-
Pseudo-second-order rate constant (mg/g min)
- K f :
-
Freundlich adsorption constant (mg/g)
- K id :
-
Intra-particle rate constant [(mg/g) min0.5]
- M :
-
Mass of adsorbent per unit volume (g l−1)
- m :
-
Amount of adsorbent added (g)
- n :
-
Freundlich constant
- q :
-
Amount of adsorbate per gram of adsorbent (mg/g)
- q e :
-
Amount of adsorbate per gram of adsorbent at equilibrium, (mg/g)
- q t :
-
Amount of adsorbate per gram of adsorbent at any time, t
- q m :
-
Equilibrium adsorption capacity using model
- q max :
-
Maximum adsorption capacity (mg/g)
- R 2 :
-
Linear correlation coefficient
- R L :
-
Separation factor
- r 0 :
-
Radius of adsorbent particle (cm)
- t :
-
Time (min)
- T :
-
Temperature (K)
- V :
-
Volume of the solution (ml)
- β :
-
Constant
References
Abd EI-Latif, M. M., Ibrahim, A. M., & EI-Kady, M. F. (2010). Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using biopolymer oak sawdust composite. J. Am. Sci., 6(6), 267–283.
Aksakal, O., & Ucun, H. (2010). Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris. Journal of Hazardous Materials, 181, 666–672.
Annadurai, G., Juang, S. R., & Lee, J. D. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials, B(92), 263–274.
Argun, M. E., Durun, S., Karatas, M., & Guru, M. (2008). Activation of pine cone using Fenton oxidation for Cd (II) and Pb(II) removal. Bioresource Technology, 99, 8691–8698.
Arias, F., & Sen, T. K. (2009). Removal of zinc metal ion (Zn2+) from its aqueous solution by kaolin clay mineral: A kinetic and equilibrium study. Colloids and Surfaces. A, 348, 100–108.
Basar, C. A. (2006). Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. Journal of Hazardous Materials, B135, 232–241.
Bhattacharya, K. G., & Sharma, A. (2003). Adsorption characteristics of the dye, Brilliant green, on Neem leaf powder. Dyes and Pigments, 57, 211–222.
Bhattacharya, A. K., Mandal, S. N., & Das, S. K. (2006). Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chemical Engineering Journal, 123, 43–51.
Bhattacharyya, K., & Sharma, A. (2005). Kinetics and thermodynamics of methylene blue adsorption on Neem leaf powder. Dyes and Pigments, 66, 51–59.
Dogan, M., Alkan, M., Turkyilmaz, A., & Ozdemir, Y. (2004). Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. Journal of Hazardous Materials, B109, 141–148.
Ferrero, F. (2007). Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust. Journal of Hazardous Materials, 142, 144–152.
Freundlich, H. M. F. (1906). Ober die adsorption in losungen. The Journal of Physical Chemistry, 57, 385–470.
Garg, V. K., Gupta, R., Yadav, A. B., & Kumar, R. (2003). Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology, 89, 121–129.
Garge, V. K., Amita, M., Kumar, R., & Gupta, R. (2004). Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian rosewood sawdust: A timber industry waste. Dyes and Pigments, 63, 243–250.
Haimour, N., & Sayed, S. (1997). Dirsat. Nat. Eng. Sci., 24(2), 215–224.
Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1966). Pore and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern condition. Industrial and Engineering Chemistry Fundamentals, 5, 212–223.
Han, R. P., Wang, Y. F., Han, P., Shi, J., Yang, J., & Lu, Y. S. (2006). Removal of methylene blue from aqueous solution by chaff in batch mode. Journal of Hazardous Materials, 137, 550–557.
Hao, J. O., Kim, H., & Chiang, P. C. (2000). Decolourization of wastewater. Critical Reviews in Environmental Science and Technology, 30, 449–505.
Hu, Q. H., Qiao, S. Z., Haghseresht, F., Wilson, M. A., & Lu, G. O. (2006). Adsorption study for removal of basic red dye using bentonite. Industrial and Engineering Chemistry Research, 45, 733–738.
Janos, P. H., Buchtova, M., & Ryznarova, M. (2003). Sorption of dyes from aqueous solutions onto fly ash. Water Research, 37, 4938–4944.
Jr Weber, W. J., & Morriss, J. C. (1963). Kinetics of adsorption on carbon from solution. J. Saint. Eng. Div. Am. Soc. Civ. Eng., 89, 31–60.
Kumar, P. S., Ramalingam, S., Senthamarai, C., Niranjanaa, M., Vijayalakshmi, P., & Sivanesan, S. (2010). Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination, 261, 52–60. doi:10.1016/j.desal.2010.05.032.
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.
Malash, G. F., & Ei-Khaiary, M. (2010). Methylene blue adsorption by the waste of abu-tartour phosphate rock. Journal of Colloid and Interface Science, 348, 537–545.
McKay, G., & Allen, S. J., Jr. (1983). Single resistance mass transfer models for the adsorption of dyes on peat. Journal of Separation Process Technology, 4(3), 1–7.
Mohammad, M., Maitra, S., Ahmad, N., Bustam, A., Sen, T. K., & Dutta, B. K. (2010). Metal ion removal from aqueous solution using physic seed hull. Journal of Hazardous Materials, 179, 363–372.
Nandi, B. K., Goswami, A., & Purkait, M. K. (2009). Removal of cationic dyes from aqueous solutions by kaolin: Kinetic and equilibrium studies. Applied Clay Science, 42, 583–590.
Oei, B. C., Ibrahim, S., Wang, S., & Ang, H. M. (2009). Surfactant modified barley straw for removal of acid and reactive dyes from aqueous solution. Bioresource Technology, 100, 4292–4295.
Ofomaja, A. E., Naidoo, E. B., & Modise, S. J. (2009). Removal of copper (II) from aqueous solution by pine and base modified pine cone powder as biosorbent. Journal of Hazardous Materials, 168, 909–917.
Oladoja, N. A., Aboluwoya, C. O., Oladimeji, Y. B., Ashogbon, A. O., & Otemuyiwa, I. O. (2008). Studies on castor seed shell as a sorbent in basic dye contaminated wastewater remediation. Desalination, 227, 190–203.
Oliveira, L. S., Franca, A. S., Alves, T. M., & Rocha, S. D. F. (2008). Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters. Journal of Hazardous Materials, 155(3), 507–512.
Ozcan, A. S., Erdem, B., & Ozcan, A. (2005). Adsorption of acid blue 193 from aqueous solutions onto BTMA-bentonite. Colloids and Surfaces. A, 266, 73–81.
Ozer, D., Dursun, G., & Ozer, A. (2007). Methylene blue adsorption from aqueous solution by dehydrated peanut hull. Journal of Hazardous Materials, 144, 171–179.
Pavan, F. A., Lima, C. E., Dias, S. L. P., & Mazzocato, C. A. (2008). Methylene blue biosorption from aqueous solution by yellow passion fruit waste. Journal of Hazardous Materials, 150, 703–712.
Ponnusami, V., Vikram, S., & Srivastava, S. N. (2008). Guava leaf powder: Novel adsorbent for removal of methylene blue from aqueous solution. Journal of Hazardous Materials, 152(1), 276–286.
Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2009). Adsorption of methylene blue on low-cost adsorbents; a review. Journal of Hazardous Materials, 177, 70–80. doi:10.1016/j.jhazmat.2009.12.047.
Rajeshwarisivaraj, S., Namasivayam, C., & Kardivelu, K. (2001). Orange peel as an adsorbent in the removal of acid violet 17 from aqueous solutions. Waste Management, 21, 1437–1445.
Rengaraj, S., Kim, Y., Joo, C. K., Choi, K., & Yi, Y. (2004). Batch adsorptive removal of copper ions in aqueous solutions by ion exchange resigns. Korean Journal of Chemical Engineering, 21(1), 187–194.
Robinson, T., Chandran, B., & Nigam, P. (2002). Removal of dyes from artificial textile dye effluent by two agricultural waste residues corncob and barley husk. Environment International, 28, 29–35.
Rosemal, H. M., Haris, M., & Sathasivam, K. (2009). The removal of methyl red from aqueous solution using banana pseudostem fibers. Am. J. Appl. Sci., 6(9), 1690–1700.
Sen, T. K., & Sarzali, M. V. (2008). Removal of cadmium metal ion (Cd2+) from its aqueous solution by aluminium oxide (Al2O3): A kinetic and equilibrium study. Chemical Engineering Journal, 142, 256–262.
Shahryari, Z., Goharrizi, A. S., & Azadi, M. (2010). Experimental study of methylene blue adsorption from aqueous solutions onto carbon nano tubes. Int. J. Water Resour. Environ. Eng., 2(2), 16–28.
Sharma, Y. C., & Uma. (2010). Optimization of parameters for adsorption of methylene blue on a low-cost activated carbon. Journal of Chemical and Engineering Data, 55, 435–439.
Sharma, P., Kaur, R., Baskar, C., & Chung, W. J. (2010). Removal of methylene blue from aqueous waste using rice husk and rice husk ash. Desalination, 259, 249–257.
Srinivasan, A., & Viraraghavan, T. (2010). Decolourization of dye wastewaters by biosorbent: A review. Journal of Environmental Management, 91, 1915–1929. doi:10.1016/j.jenvman.2010.05.003.
Tan, I. A. W., Hameed, B. H., & Ahmad, A. L. (2007). Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chemical Engineering Journal, 127, 111–119.
Tarawou, T., & Horsfall, M. (2007). Adsorption of methylene blue dye on pure and carbonised water weeds. Bioremediation J., 11(2), 77–84.
Ucun, H., Kemal, Y., Kaya, Y., Cakici, A. & Algur, O. F. (2002). Biosorption of chromium (VI) from aqueous solution by cone biomass of Pinus Sylvestries. Biresource Technology, 85, 155–158.
Ucun, H., Bayhan, Y. K., Kaya, Y., Cakici, A., & Algur, O. F. (2003). Biosorption of lead (II) from aqueous solution by cone biomass of Pinus sylvestris. Desalination, 154, 233–238.
Vadivelan, V., & Kumar, K. V. (2005). Equilibrium, kinetics, mechanism and process design for the sorption of methylene blue onto rice husk. Journal of Colloid and Interface Science, 286, 90–100.
Vilar, V. J. P., Botelho, C. M. C., & Boaventura, R. A. R. (2007). Methylene blue adsorption by algal biomass based materials. Journal of Hazardous Materials, 147, 120–132.
Vimonses, V., Lei, S., Jin, B., Chow, C. W. K., & Saint, C. (2009). Kinetic study and equilibrium isotherm analysis of Congo red adsorption by clay materials. Chemical Engineering Journal, 148, 354–364.
Visa, M., Bogatu, C., & Dutta, A. (2009). Simultaneous adsorption of dyes and heavy metals from multicomponent solutions using fly ash. Applications of Surface Science, 256, 5486–5491. doi:10.1016/j.apsusc.2009.12.145.
Wang, S., Zhu, Z. H., Coomes, A., Haghseresht, F., & Lu, G. Q. (2005). The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater. Journal of Colloid and Interface Science, 284, 440–446.
Wang, X. S., Zhou, Y., Jiang, Y., & Sun C. (2008). The removal of basic dyes from aqueous solutions using agricultural by products. J. Hazardous Materials, 157, 374–385.
Waranusantigul, P., Pokethitiyook, P., Kruatrachue, M., & Upatham, E. S. (2003). Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environmental Pollution, 125, 385–392.
Yao, Z. L., Wang, J., & Qi. (2009). Biosorption of methylene blue from aqueous solution using a bioenergy forest waste: Xanthoceras sorbifolia seed coat. Clean, 37(8), 642–648.
Acknowledgement
Chemical Engineering Department of Curtin University of Technology, Perth for financial support through internal funding project entitled “Metal Ion Adsorption”, Professor De-Yu Li of Physics Department for help in taking XRD, Ann Carroll of Chemical Department for laboratory helping and Zhezi Zhang for FTIR analysis.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sen, T.K., Afroze, S. & Ang, H.M. Equilibrium, Kinetics and Mechanism of Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pine Cone Biomass of Pinus radiata . Water Air Soil Pollut 218, 499–515 (2011). https://doi.org/10.1007/s11270-010-0663-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11270-010-0663-y
Keywords
- Pinus radiata
- MB adsorption
- Kinetic model
- Isotherm
- Diffusion